From STP to game-based control

Abstract

This paper provides a comprehensive survey on semi-tensor product (STP) of matrices and its applications to different disciplines. First of all, the STP and its basic properties are introduced. Meanwhile, its inside physical meaning is explained. Second, its application to conventional dynamic systems is presented. As an example, the region of attraction of stable equilibriums is discussed. Third, its application to logical systems is presented. Particularly, the algebraic state space representation of logical systems and the important role it plays in analysis and control of logical systems are emphasized. Fourth, its application to finite games is discussed. The most interesting problems include potential game, evolutionary game, and game theoretic control. Finally, the mathematical essence of STP is briefly introduced.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Cheng D Z. Semi-tensor product of matrices and its application to Morgan’s problem. Sci China Ser F-Inf Sci, 2001, 44: 195–212

    MATH  Google Scholar 

  2. 2

    Bates D M, Watts D G. Relative curvature measures of nonlinearity. J Roy Stat Soc, 1980, 42: 1–25

    MathSciNet  MATH  Google Scholar 

  3. 3

    Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-tensor Product of Matrices and Its Applications. Singapore: World Scientific, 2012

    Google Scholar 

  5. 5

    Isidori A. Nonlinear Control Systems. 3rd ed. London: Springer, 1995

    Google Scholar 

  6. 6

    Cheng D Z, Dong Y L. Semi-tensor product of matrices and its some applications to physics. Meth Appl Anal, 2003, 10: 565–588

    MathSciNet  MATH  Google Scholar 

  7. 7

    Cheng D Z. Some applications of semi-tensor product of matrix in algebra. Comput Math Appl, 2006, 52: 1045–1066

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Ma J, Cheng D Z, Mei SW, et al. Approximation of the boundary of power system stability region based on semi-tensor theory part one: theoretical basis (in Chinese). Autom Electr Power Syst, 2006, 30: 1–5

    Google Scholar 

  9. 9

    Mei S, Liu F, Xie A. Transient Analysis of Power Systems —A Semi-tensor Product Approach (in Chinese). Beijing: Tsinghua University Press, 2010

    Google Scholar 

  10. 10

    Ma J, Cheng D Z, Mei SW, et al. Approximation of the boundary of power system stability region based on semi-tensor theory part two: application (in Chinese). Autom Electr Power Syst, 2006, 30: 7–12

    Google Scholar 

  11. 11

    Cheng D Z, Feng J E, Lv H L. Solving fuzzy relational equations via semi-tensor product. IEEE Trans Fuzzy Syst, 2012, 20: 390–396

    Article  Google Scholar 

  12. 12

    Feng J E, Lv H L, Cheng D Z. Multiple fuzzy relation and its application to coupled fuzzy control. Asian J Control, 2013, 15: 1313–1324

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Cheng D Z. Semi-tensor product of matrices and its applications to dynamic systems. In: New Directions and Applications in Control Theory. Berlin: Springer, 2005. 61–79

    Google Scholar 

  14. 14

    Cheng D Z, Ma J, Lu Q, et al. Quadratic form of stable sub-manifold for power systems. Int J Robust Nonlin Control, 2004, 14: 773–788

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Chiang H D, Hirsch M W, Wu F F. Stability regions of nonlinear autonomous dynamical systems. IEEE Trans Autom Control, 1988, 33: 16–27

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Xue A C, Wu F F, Lu Q, et al. Power system dynamic security region and its approximations. IEEE Trans Circ Syst I, 2006, 53: 2849–2859

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Drossel B, Mihaljev T, Greil F. Number and length of attractors in a critical Kauffman model with connectivity one. Phys Rev Lett, 2005, 94: 088701

    Article  Google Scholar 

  18. 18

    Farrow C, Heidel J, Maloney J, et al. Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans Neural Netw, 2004, 15: 348–354

    Article  Google Scholar 

  19. 19

    Heidel J, Maloney J, Farrow C, et al. Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int J Bifurcat Chaos, 2003, 13: 535–552

    MathSciNet  Article  MATH  Google Scholar 

  20. 20

    Cheng D Z, Qi H S. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Control, 2010, 55: 2251–2258

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Cheng D Z, Qi H S. State-space analysis of Boolean networks. IEEE Trans Neural Netw, 2010, 21: 584–594

    Article  Google Scholar 

  22. 22

    Zhao Y, Qi H S, Cheng D Z. Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett, 2010, 59: 767–774

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Zhang K Z, Zhang L J. Observability of Boolean control networks: a unified approach based on finite automata. IEEE Trans Autom Control, 2016, 61: 2733–2738

    MathSciNet  Article  MATH  Google Scholar 

  24. 24

    Laschov D, Margaliot M, Even G. Observbility of Boolean networks: a graph-theoretic approach. Automatica, 2013, 49: 2351–2362

    Article  MATH  Google Scholar 

  25. 25

    Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1390–1401

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Cheng D Z, Qi H S, Liu T, et al. A note on observability of Boolean control networks. Syst Control Lett, 2016, 87: 76–82

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Cheng D Z, Qi H S, Li Z Q, et al. Stability and stabilization of Boolean networks. Int J Robust Nonlin Control, 2011, 21: 134–156

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Cheng D Z. Distrubane decoupling of Boolean control networks. IEEE Trans Autom Control, 2011, 56: 2–10

    Article  MATH  Google Scholar 

  29. 29

    Mu Y F, Guo L. Optimization and identification in a non-equilibrium dynamic game. In: Proceedings of the 48h IEEE Conference on Decision and Control, Shanghai, 2009. 5750–5755

    Google Scholar 

  30. 30

    Zhao Y, Li Z Q, Cheng D Z. Optimal control of logical control networks. IEEE Trans Autom Control, 2011, 56: 1766–1776

    MathSciNet  Article  MATH  Google Scholar 

  31. 31

    Cheng D Z, Zhao Y, Xu T T. Receding horizon based feedback optimization for mix-valued logical networks. IEEE Trans Autom Control, 2015, 60: 3362–3366

    MathSciNet  Article  MATH  Google Scholar 

  32. 32

    Laschov D, Margaliot M. A maximum principle for single-input Boolean control networks. IEEE Trans Autom Control, 2011, 56: 913–917

    MathSciNet  Article  MATH  Google Scholar 

  33. 33

    Cheng D Z, Qi H S, Li Z Q. Model construction of Boolean network via observed data. IEEE Trans Neural Netw, 2011, 22: 525–536

    Article  Google Scholar 

  34. 34

    Cheng D Z, Zhao Y. Identification of Boolean control networks. Automatica, 2011, 47: 702–710

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Zhao Y, Kim J, Filippone M. Aggregation algorithm towards large-scale Boolean netwok analysis. IEEE Trans Autom Control, 2013, 58: 1976–1985

    Article  MATH  Google Scholar 

  36. 36

    Zhao Y, Ghosh B K, Cheng D Z. Control of large-scale Boolean networks via network aggregation. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1527–1536

    MathSciNet  Article  Google Scholar 

  37. 37

    Lu J Q, Li H T, Liu Y, et al. A survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl, 2017, 11: 2040–2047

    Article  Google Scholar 

  38. 38

    Gao B, Li L X, Peng H P, et al. Principle for performing attractor transits with single control in Boolean networks. Phys Rev E, 2013, 88: 062706

    Article  Google Scholar 

  39. 39

    Gao B, Peng H P, Zhao D W, et al. Attractor transformation by impulsive control in Boolean control network. Math Probl Eng, 2013, 2014: 674571

    MathSciNet  Google Scholar 

  40. 40

    Li R, Yang M, Chu T G. State feedback stabilization for Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1853–1857

    MathSciNet  Article  MATH  Google Scholar 

  41. 41

    Li H T, Wang Y Z. Output feedback stabilization control design for Boolean control networks. Automatica, 2013, 49, 3641–3645

    MathSciNet  Article  MATH  Google Scholar 

  42. 42

    Meng M, Feng J E. A matrix appoach to hypergraph stable set and coloring problems with its application to storing problem. J Appl Math, 2014, 2014: 783784

    Google Scholar 

  43. 43

    Wang Y Z, Zhang C H, Liu Z B. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems. Automatica, 2012, 48: 1227–1236

    MathSciNet  Article  MATH  Google Scholar 

  44. 44

    Xu M R, Wang Y Z, Wei A R. Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling. Control Theory Technol, 2014, 12: 187–197

    MathSciNet  Article  MATH  Google Scholar 

  45. 45

    Zhang L Q, Feng J E. Mix-valued logic-based formation control. Int J Control, 2013, 86: 1191–1199

    MathSciNet  Article  MATH  Google Scholar 

  46. 46

    Cheng D Z, Xu X R. Bi-decomposition of multi-valued logical functions and its applications. Automatica, 2003, 49: 1979–1985

    MathSciNet  Article  MATH  Google Scholar 

  47. 47

    Li H T, Wang Y Z. Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method. Automatica, 2012, 48: 688–693

    MathSciNet  Article  MATH  Google Scholar 

  48. 48

    Liu Z B, Wang Y Z, Li H T. New approach to derivative calculation of multi-valued logical functions with application to fault detection of digital circuits. IET Control Theory Appl, 2014, 8: 554–560

    MathSciNet  Article  Google Scholar 

  49. 49

    Ouyang C T, Jiang J H. Reliability estimation of sequential circuit based on probabilistic matrices (in Chinese). ACTA Electron Sin, 2013, 41: 171–177

    Google Scholar 

  50. 50

    Ge A D, Wang Y Z, Wei A R, et al. Control design for multi-variable fuzzy systems with application to parallel hybrid electric vehicles. Control Theory Appl, 2013, 30: 998–1004

    Google Scholar 

  51. 51

    Xiao X H, Duan P Y, Lv H L, et al. Design of fuzzy controller for air-conditioning systems based-on semi-tensor product. In: Proceedings of the 26th Chinese Control and Decision Conference, Changsha, 2014. 3507–3512

    Google Scholar 

  52. 52

    Yan Y Y, Chen Z Q, Liu Z X. Solving type-2 fuzzy relation equations via semi-tensor product of matrices. Control Theory Technol, 2014, 12: 173–186

    MathSciNet  Article  MATH  Google Scholar 

  53. 53

    Xu X R, Hong Y G. Matrix expression and reachability of finite automata. J Control Theory Appl, 2012, 10: 210–215

    MathSciNet  Article  Google Scholar 

  54. 54

    Xu X R, Hong Y G. Matrix expression to model matching of asynchronous sequential machines. IEEE Trans Autom Control, 2013, 58: 2974–2979

    Article  MATH  Google Scholar 

  55. 55

    Xu X R, Hong Y G. Observability and observer design for finite automata via matrix approach. IET Control Theory Appl, 2013, 7: 1609–1615

    MathSciNet  Article  Google Scholar 

  56. 56

    Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product of matrices approach to reachability of finite automata with application to language recognition. Front Comput Sci, 2014, 8: 948–957

    MathSciNet  Article  Google Scholar 

  57. 57

    Hochma G, Margaliot M, Fornasini E. Symbolic dynamics of Boolean control networks. Automatica, 2013, 49: 2525–2530

    MathSciNet  Article  MATH  Google Scholar 

  58. 58

    Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product approach to controllability and stabilizability of finite automata. J Syst Eng Electron, 2015, 26: 134–141

    Article  Google Scholar 

  59. 59

    Liu Z B, Wang Y Z, Cheng D Z. Nonsingularity of nonlinear feedback shift registers. Automatica, 2015, 55: 247–253

    MathSciNet  Article  Google Scholar 

  60. 60

    Zhang J, Lu S, Yang G. Improved calculation scheme of structure matrix of Boolean network using semi-tensor product. In: Proceedings of International Conference on Information Computing and Applications. Berlin: Springer, 2012. 242–248

    Google Scholar 

  61. 61

    Zhao D W, Peng H P, Li L X, et al. Novel way to research nonlinear feedback shift register. Sci China Inf Sci, 2014, 57: 092114

    MathSciNet  Google Scholar 

  62. 62

    Zhong J H, Lin D D. A new linearization method for nonlinear feedback shift registers. J Comput Syst Sci, 2015, 81: 783–796

    MathSciNet  Article  MATH  Google Scholar 

  63. 63

    Zhong J H, Lin D D. Stability of nonlinear feedback shift registers. Sci China Inf Sci, 2016, 59: 012204

    Google Scholar 

  64. 64

    Chen Y B, Xi N, Miao L, et al. Applications of the semi-tensor product to the internet-based tele-operation systems (in Chinese). Robot, 2012, 34: 50–55

    Article  Google Scholar 

  65. 65

    Liu X H, Xu Y. An inquiry method of transit network based on semi-tensor product (in Chinese). Complex Syst Complexity Sci, 2013, 10: 38–44

    Google Scholar 

  66. 66

    Li H T, Wang Y Z. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917–2922

    MathSciNet  Article  MATH  Google Scholar 

  67. 67

    Li H T, Wang Y Z, Xie L H, et al. Disturbance decoupling control design for switched Boolean control networks. Syst Control Lett, 2014, 72: 1–6

    MathSciNet  Article  MATH  Google Scholar 

  68. 68

    Li F F, Lu X W, Yu Z X. Optimal control algorithms for switched Boolean network. J Franklin Inst, 2014, 351: 3490–3501

    MathSciNet  Article  MATH  Google Scholar 

  69. 69

    von Neumann J, Morgenstern O. Theory of Games and Economic Behavior. Princeton: Princeton University Press, 1944

    Google Scholar 

  70. 70

    Candogan O, Menache I, Ozdaglar A, et al. Flows and decompositions of games: harmonic and potential games. Math Oper Res, 2011, 36: 474–503

    MathSciNet  Article  MATH  Google Scholar 

  71. 71

    Cheng D Z, Liu T, Zhang K Z, et al. On decomposed subspaces of finite games. IEEE Trans Autom Control, 2016, 61: 3651–3656

    MathSciNet  Article  MATH  Google Scholar 

  72. 72

    Monderer D, Shapley L S. Potential games. Games Econ Behav, 1996, 14: 124–143

    MathSciNet  Article  MATH  Google Scholar 

  73. 73

    Cheng D Z. On finite potential games. Automatica, 2014, 50: 1793–1801

    MathSciNet  Article  MATH  Google Scholar 

  74. 74

    Liu T, Qi H S, Cheng D Z. Dual expressions of decomposed subspaces of finite games. In: Proceedings of the 34th Chinese Control Conference (CCC), Hangzhou, 2015. 9146–9151

    Google Scholar 

  75. 75

    Hao Y, Cheng D Z. On skew-symmetric games. ArXiv Preprint, arXiv:1712.02962

  76. 76

    Guo P L, Wang Y Z, Li H T. Algebraic formulation and strategy optimization for a class of evolutionary network games via semi-tensor product method. Automatica, 2013, 49: 3384–3389

    MathSciNet  Article  MATH  Google Scholar 

  77. 77

    Cheng D Z, He F H, Qi H S, et al. Modeling, analysis and control of networked evolutionary games. IEEE Trans Autom Control, 2015, 60: 2402–2415

    MathSciNet  Article  MATH  Google Scholar 

  78. 78

    Gopalakrishnan R, Marden J R, Wierman A. An architectural view of game theoretic control. Perfor Eval Rev, 2011, 38: 31–36

    Article  Google Scholar 

  79. 79

    Hao Y, Pan S, Qiao Y, et al. Cooperative control vial congestion game. ArXiv Preprint, arXiv:1712.02504

  80. 80

    Liu T, Wang J H, Cheng D Z. Game theoretic control of multi-agent systems. ArXiv Preprint, arxiv:1608.00192

  81. 81

    Facchini G, Megen F V, Borm P, et al. Congestion models and weighted Bayesian potential games. Theory Decis, 1997, 42: 193–206

    MathSciNet  Article  MATH  Google Scholar 

  82. 82

    Cheng D Z. On equivalence of matrices. ArXiv Preprint, arXiv:1605.09523v4

Download references

Acknowledgements

This work was supported partly by National Natural Science Foundation of China (NSFC) (Grant Nos. 61333001, 61773371, 61733018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daizhan Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Qi, H. & Liu, Z. From STP to game-based control. Sci. China Inf. Sci. 61, 010201 (2018). https://doi.org/10.1007/s11432-017-9265-2

Download citation

Keywords

  • semi-tensor product of matrices
  • Boolean network
  • logical (control) system
  • finite game
  • game theoretic control