mmWave communications for 5G: implementation challenges and advances

  • Lianming Li
  • Dongming Wang
  • Xiaokang Niu
  • Yuan Chai
  • Linhui Chen
  • Long He
  • Xu Wu
  • Fuchun Zheng
  • Tiejun Cui
  • Xiaohu You
Review
  • 392 Downloads

Abstract

The requirement of the fifth generation (5G) wireless communication for high throughput motivates the wireless industry to use the mmWave (millimeter wave) communications for its wide bandwidth advantage. To compensate the heavy path loss and increase the communications capacity, phased array beamforming and massive multiple-input multiple-output (MIMO) techniques are employed at both the user equipment (UE) and base stations (BS). Considering the commercial requirements, 5G mmWave large array systems should be implemented in an energy- and cost-efficient way with a small form factor. To address above issues and realize a reliable communications link, taking into account the particular characteristics of 5G mmWave systems, this paper firstly examines the design challenges and trade-offs in system implementations, then some of the design strategies are summarized. At last, recent advance in RF front-end circuits and receiver sub-systems is then highlighted.

Keywords

millimeter wave massive MIMO beamforming hybrid precoding channel estimation phased array power amplifier voltage controlled oscillator (VCO) 

Notes

Acknowledgements

This work was supported by National High-Tech Project (863) of China (Grant Nos. 2011AA010201, 2011AA010202), National Nature Science Foundation of China (Grant Nos. 61306030, 61674037), National Key R&D Program of China (Grant No. 2016YFC0800400), and Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Cui Q M, Gu Y, Ni W, et al. Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J Sel Area Commun, 2017, 35: 1754–1767CrossRefGoogle Scholar
  2. 2.
    Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access, 2013, 1: 335–349CrossRefGoogle Scholar
  3. 3.
    Ericsson white paper. 5G radio access. 2016. http://www.ericsson.com/assets/local/publications/white-papers/ wp-5g.pdfGoogle Scholar
  4. 4.
    Onoe S. Evolution of 5G mobile technology toward 2020 and beyond. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2016Google Scholar
  5. 5.
    Poon A S, Taghivand M. Supporting and enabling circuits for antenna arrays in wireless communications. Proc IEEE, 2012, 100: 2207–2218CrossRefGoogle Scholar
  6. 6.
    Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998–1008CrossRefGoogle Scholar
  7. 7.
    Gao L, Zhang S, Liu Z Y, et al. An overview of multi-antenna technologies for space-ground integrated networks. Sci China Inf Sci, 2016, 59: 121301CrossRefGoogle Scholar
  8. 8.
    Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301Google Scholar
  9. 9.
    Roh W, Seol J, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106–113CrossRefGoogle Scholar
  10. 10.
    Vook F, Ghosh A, Thomas T. MIMO and bemaforming solutions for 5G technology. In: Proceedings of IEEE MTT-S International Microwave Symposium, Tampa, 2014Google Scholar
  11. 11.
    Li L M, Niu X K, Chai Y, et al. The path to 5G: mmWave aspects. J Commun Inf Netw, 2016, 2: 1–18CrossRefGoogle Scholar
  12. 12.
    Boers M, Afshar B, Vassiliou I, et al. A 16TX/RX 60 GHz 802.11ad chipset with single coaxial interface and polarization diversity. IEEE J Solid-State Circ, 2014, 2: 344–345Google Scholar
  13. 13.
    Sadhu B, Tousi Y, Hallin J, et al. A 28 GHz 32-elements phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. ISSCC Dig Tech Pap, 2014, 2: 128–129Google Scholar
  14. 14.
    Li L M, Niu X K, Chen L H, et al. Design of 60 GHz RF transceiver in CMOS: challenges and recent advances. China Commun, 2014, 11: 32–41CrossRefGoogle Scholar
  15. 15.
    Hu S, Wang F, Wang H. A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2017Google Scholar
  16. 16.
    Kim S, Rebeiz G. A low-power BiCMOS 4-element phased array receiver for 76-84 GHz radars and communication systems. IEEE J Solid-State Circ, 2012, 47: 359–367CrossRefGoogle Scholar
  17. 17.
    Niknejad A. mm-Wave phased array receivers. RF Blocks for Wireless Transceiver, ISSCC Short Course, 2013Google Scholar
  18. 18.
    Paramesh J, Bishop R, Soumyanath K, et al. A four-antenna cartesian-combining receiver in 90 nm CMOS. IEEE J Solid-State Circ, 2005, 40: 2515–2524CrossRefGoogle Scholar
  19. 19.
    Heij W, Muskens H. Multi-channel receiver and optical data link for radar systems with digital beamforming. In: Proceeding of International Radar Conference, Alexandria, 1995Google Scholar
  20. 20.
    Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phase-array transceiver pair for multi-Gb/s wireless communication. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2011Google Scholar
  21. 21.
    Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with lowpower analog and digital baseband circuitry. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012Google Scholar
  22. 22.
    El Ayach O, Rajagopal S, Abu-Surra S, et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun, 2014, 13: 1499–1513CrossRefGoogle Scholar
  23. 23.
    Rusu C, Mèndez-Rial R, González-Prelcic N, et al. Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Trans Wirel Commun, 2014, 13: 1499–1513CrossRefGoogle Scholar
  24. 24.
    Yu X H, Shen J C, Zhang J, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 485–500CrossRefGoogle Scholar
  25. 25.
    Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998–1009CrossRefGoogle Scholar
  26. 26.
    Li J H, Xiao L M, Xu X B, et al. Energy-efficient Butler-matrix-based hybrid beamforming for multiuser mmWave MIMO system. Sci China Inf Sci, 2017, 60: 080304CrossRefGoogle Scholar
  27. 27.
    Alkhateeb A, Leus G, Heath R W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun, 2015, 14: 6481–6494CrossRefGoogle Scholar
  28. 28.
    Ni W H, Dong X D. Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Trans Commun, 2016, 64: 201–211CrossRefGoogle Scholar
  29. 29.
    Zhang X Y, Molisch A F, Kung S Y. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process, 2005, 53: 4091–4103MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 2016, 10: 501–513CrossRefGoogle Scholar
  31. 31.
    Sohrabi F, Yu W. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE J Sel Area Commun, 2017, 35: 1432–1443CrossRefGoogle Scholar
  32. 32.
    Zhang J h, Tang P, Tian L, et al. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inf Sci, 2017, 60: 080301CrossRefGoogle Scholar
  33. 33.
    Adhikary A, Al Safadi E, Samimi M K, et al. Joint spatial division and multiplexing for mm-Wave channels. IEEE J Sel Area Commun, 2014, 32: 1239–1255CrossRefGoogle Scholar
  34. 34.
    Cheng X T, Luo Z Q. Compensation of transmitter I/Q imbalance in millimeter-Wave SC-FDE systems. IEEE Trans Veh Technol, 2017, 66: 4472–4476CrossRefGoogle Scholar
  35. 35.
    Chen X M, Fang C, Zou Y N, et al. Beamforming MIMO-OFDM systems in the presence of phase noises at millimeter- Wave frequencies. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, 2017Google Scholar
  36. 36.
    Bazzi S, Xu W. Robust Bayesian precoding for mitigation of TDD hardware calibration errors. IEEE Signal Process Lett, 2016, 23: 929–933CrossRefGoogle Scholar
  37. 37.
    Xia P F, Heath R W, Gonzalez-Prelcic N. Robust analog precoding designs for millimeter wave MIMO transceivers with frequency and time division duplexing. IEEE Trans Commun, 2016, 64: 4622–4634CrossRefGoogle Scholar
  38. 38.
    Heath R W, Gonzalez-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 436–453CrossRefGoogle Scholar
  39. 39.
    Hur S, Kim T, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391–4403CrossRefGoogle Scholar
  40. 40.
    Alkhateeb A, El Ayach O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 2014, 8: 831–846CrossRefGoogle Scholar
  41. 41.
    Xiao Z Y, Xia P F, Xia X G. Codebook design for millimeter-wave channel estimation with hybrid precoding structure. IEEE Trans Wirel Commun, 2017, 16: 141–153CrossRefGoogle Scholar
  42. 42.
    Kokshoorn M, Chen H, Wang P, et al. Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation. IEEE Trans Signal Process, 2017, 65: 601–616MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ghauch H, Kim T, Bengtsson M, et al. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 528–542CrossRefGoogle Scholar
  44. 44.
    Lee J, Gil G T, Lee Y H. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans Commun, 2016, 64: 2370–2386CrossRefGoogle Scholar
  45. 45.
    Swindlehurst A L, Ayanoglu E, Heydari P, et al. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag, 2014, 52: 56–62CrossRefGoogle Scholar
  46. 46.
    Alkhateeby A, Leusz G, Heath R W. Compressed sensing based multi-user millimeter wave systems: how many measurements are needed? In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 2015. 2909–2913Google Scholar
  47. 47.
    Kokshoorn M, Chen H, Li Y H, et al. Beam-On-Graph: simultaneous channel estimation in multi-user millimeter wave MIMO systems. ArXiv Preprint, arXiv:1701.00365Google Scholar
  48. 48.
    Rangan S. Generalized approximate message passing for estimation with random linear mixing. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, 2011. 2168–2172Google Scholar
  49. 49.
    Gao Z, Hu C, Dai L L, et al. Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett, 2016, 20: 1259–1262CrossRefGoogle Scholar
  50. 50.
    Zhou Z, Fang J, Yang L X, et al. Channel estimation for millimeter-wave multiuser MIMO systems via PARAFAC decomposition. IEEE Trans Wirel Commun, 2016, 15: 7501–7516CrossRefGoogle Scholar
  51. 51.
    Zhou Z, Fang J, Yang L X, et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMOOFDM systems. IEEE J Sel Area Commun, 2017, 35: 1524–1538CrossRefGoogle Scholar
  52. 52.
    Bogale T E, Le L B, Haghighat A, et al. On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming. IEEE Trans Wirel Commun, 2016, 15: 3311–3326CrossRefGoogle Scholar
  53. 53.
    Bogale T E, Le L B, Wang X B. Hybrid analog-digital channel estimation and beamforming: training-throughput tradeoff. IEEE Trans Commun, 2015, 63: 5235–5249CrossRefGoogle Scholar
  54. 54.
    Hur S, Baek S, Kim B, et al. Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE J Sel Top Signal Process, 2016, 10: 454–469CrossRefGoogle Scholar
  55. 55.
    Zhao L, Ng D W K, Yuan J H. Multi-user precoding and channel estimation for hybrid millimeter wave systems. IEEE J Sel Area Commun, 2017, 35: 1576–1590CrossRefGoogle Scholar
  56. 56.
    Shafin R, Liu L J, Zhang J Z, et al. DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FDMIMO OFDM systems. IEEE Trans Wirel Commun, 2016, 15: 6963–6978CrossRefGoogle Scholar
  57. 57.
    Zhu G X, Huang K, Lau V K N, et al. Hybrid beamforming via the kronecker decomposition for the millimeter-Wave massive MIMO systems. ArXiv Preprint, arXiv:1704.03611Google Scholar
  58. 58.
    Palacios J, De Donno D, Widmer J. Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. ArXiv Preprint, arXiv:1612.07957Google Scholar
  59. 59.
    Bae J, Lim S H, Yoo J H, et al. New beam tracking technique for millimeter wave-band communications. ArXiv Preprint, arXiv:1702.00276Google Scholar
  60. 60.
    Guo Y C, Tang J L, Wu G, et al. Power allocation for massive MIMO: impact of power amplifier efficiency. Sci China Inf Sci, 2016, 59: 022301Google Scholar
  61. 61.
    Chen L H, Li L M, Cui T J. A. V 18 dBm 60 GHz power amplifier with 24 dB gain in 65 nm LP CMOS. In: Proceedings of Asia Pacific Microwave Conference, Kaohsiung, 2012. 13–15Google Scholar
  62. 62.
    Floyd B. A 16–18.8 GHz sub-integer-N frequency synthesizer for 60 GHz transceiver. IEEE J Solid-State Circ, 2012, 43: 1076–1086CrossRefGoogle Scholar
  63. 63.
    Li L M, Reynaert P, Steyaert M. Design and analysis of a 90 nm mm-Wave oscillator using inductive-division LC tank. IEEE J Solid-State Circ, 2009, 44: 1950–1958CrossRefGoogle Scholar
  64. 64.
    Niu X K, Li L M, Wang D M. A 50 GHz VCO in 65 nm LP CMOS for mm-Wave applications. In: Proceedings of the 13th IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, 2016Google Scholar
  65. 65.
    Mirzaei A, Heidari M, Bagheri R, et al. The quadrature LC oscillators: a complete portrait on injection locking. IEEE J Solid-State Circ, 2007, 42: 1916–1932CrossRefGoogle Scholar
  66. 66.
    Miller R L. Fractional-frequency generators utilizing regenerative modulation. Proc IRE, 1939, 27: 446–457CrossRefGoogle Scholar
  67. 67.
    Niu X K, Li L M, Wang D M. A compact wide-locking range divide-by-4 static divider for mm-Wave applications. In: Proceedings of Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, 2016Google Scholar
  68. 68.
    Chai Y, Li L M, Zhao D X, et al. A 20-to-75 dB gain 5 dB noise figure broadband 60 GHz receiver with digital calibration. In: Proceedings of IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016Google Scholar
  69. 69.
    Chai Y, Niu X K, He L, et al. A 60-GHz CMOS broadband receiver with digital calibration, 20-to-75-dB gain, and 5-dB noise figure. IEEE Trans Microw Theory Tech, 2017, 65: 3989–4001CrossRefGoogle Scholar
  70. 70.
    Okada K, Li N, Matsushita K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c. IEEE J Solid-State Circ, 2011, 46: 2988–3004CrossRefGoogle Scholar
  71. 71.
    Saito N, Tsukizawa T, Shirakata N, et al. A fully integrated 60 GHz CMOS transceiver chipset based on WiGig/IEEE 802.11ad with built-in self calibration for mobile usage. IEEE J Solid-State Circ, 2013, 48: 3146–3159CrossRefGoogle Scholar
  72. 72.
    Li L M, Reynaert P, Steyaert M. A 60 GHz 15.7 mW static frequency divider in 90nm CMOS. In: Proceedings of ESSCIRC, Seville, 2010. 246–249CrossRefGoogle Scholar
  73. 73.
    He L, Li L M, Wang Z G. A low-power wideband dB-linear variable gain amplifier with DC offset cancellation for 60 GHz receiver. In: Proceedings of the 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, 2016Google Scholar
  74. 74.
    Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3-Gb/s 60 GHz CMOS transceiver with low-power analog and digital baseband circuitry. IEEE J Solid-State Circ, 2013, 48: 46–65CrossRefGoogle Scholar
  75. 75.
    Mitomo T, Tsutsumi Y, Hoshino H, et al. A 2-Gb/s throughput CMOS transceiver chipset with in-package antenna for 60-GHz short-range wireless communication. IEEE J Solid-State Circ, 2012, 47: 3160–3171CrossRefGoogle Scholar
  76. 76.
    Wu H, Wang N Y, Du Y, et al. A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2015, 63: 1053–1062CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lianming Li
    • 1
    • 2
  • Dongming Wang
    • 1
    • 2
  • Xiaokang Niu
    • 1
    • 2
  • Yuan Chai
    • 1
    • 3
  • Linhui Chen
    • 1
    • 3
  • Long He
    • 1
  • Xu Wu
    • 1
    • 2
  • Fuchun Zheng
    • 1
    • 3
  • Tiejun Cui
    • 1
    • 3
  • Xiaohu You
    • 1
    • 2
  1. 1.School of Information Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.National Mobile Communications Research LaboratorySoutheast UniversityNanjingChina
  3. 3.State Key Laboratory of Millimeter WavesSoutheast UniversityNanjingChina

Personalised recommendations