Visible and infrared image fusion using ℓ0-generalized total variation model

  • Han Pan
  • Zhongliang Jing
  • Lingfeng Qiao
  • Minzhe Li

Supplementary material

11432_2017_9246_MOESM1_ESM.pdf (4.6 mb)
Supplementary material, approximately 4736 KB.


  1. 1.
    Yun X, Jing Z L, Xiao G, et al. A compressive tracking based on time-space Kalman fusion model. Sci China Inf Sci, 2016, 59: 012106CrossRefGoogle Scholar
  2. 2.
    Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recogn Lett, 1989, 9: 245–253CrossRefzbMATHGoogle Scholar
  3. 3.
    Da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process, 2006, 15: 3089–3101CrossRefGoogle Scholar
  4. 4.
    Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform. Inf Fusion, 2007, 8: 143–156CrossRefGoogle Scholar
  5. 5.
    Ma J Y, Chen C, Li C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization. Inf Fusion, 2016, 31: 100–109CrossRefGoogle Scholar
  6. 6.
    Jie Y, Lu W S. Compressive imaging by generalized total variation minimization. In: Proceedings of 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ishigaki, 2014. 21–24Google Scholar
  7. 7.
    Feng M B, Mitchell J E, Pang J S, et al. Complementarity formulations of l0 norm optimization problems. 2013. FILE/2013/09/4053.pdfGoogle Scholar
  8. 8.
    Yuan G Z, Ghanem B. A proximal alternating direction method for semi-definite rank minimization. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, 2016. 2300–2308Google Scholar
  9. 9.
    Xydeas C S, Petrovic V. Objective image fusion performance measure. Electron Lett, 2000, 36: 308–309CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations