Advertisement

A survey on applications of semi-tensor product method in engineering

  • Haitao Li
  • Guodong Zhao
  • Min Meng
  • June Feng
Review Special Focus on Analysis and Control of Finite-Valued Network Systems

Abstract

Semi-tensor product (STP) of matrices has attracted more and more attention from both control theory and engineering in the last two decades. This paper presents a comprehensive survey on the applications of STP method in engineering. Firstly, some preliminary results on STP method are recalled. Secondly, some applications of STP method in engineering, including gene regulation, power system, wireless communication, smart grid, information security, combustion engine and vehicle control, are reviewed. Finally, some potential applications of STP method are predicted.

Keywords

semi-tensor product of matrices gene regulation power system smart grid information security vehicle control 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61374065, 61374025, 61503225), Natural Science Foundation of Shandong Province (Grant No. ZR2015FQ003), and Natural Science Fund for Distinguished Young Scholars of Shandong Province (Grant No. JQ201613).

References

  1. 1.
    Cheng D Z. Semi-tensor product of matrices and its application to Morgan’s problem. Sci China Ser F-Inf Sci, 2001, 44: 195–212MATHGoogle Scholar
  2. 2.
    Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-tensor Product of Matrices and Its Applications. Singapore: World Scientific, 2012MATHCrossRefGoogle Scholar
  3. 3.
    Cheng D Z, Qi H S. Semi-tensor Product of Matrices-Theory and Applications. Beijing: Science Press, 2007Google Scholar
  4. 4.
    Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. London: Springer-Verlag, 2011MATHCrossRefGoogle Scholar
  5. 5.
    Cheng D Z, Ma J, Lu Q, et al. Quadratic form of stable sub-manifold for power systems. Int J Robust Nonlinear Control, 2004, 14: 773–788MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cheng D Z, Hu X M, Wang Y Z. Non-regular feedback linearization of nonlinear systems via a normal form algorithm. Automatica, 2004, 40: 439–447MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cheng D Z, Yang G W, Xi Z R. Nonlinear systems possessing linear symmetry. Int J Robust Nonlinear Control, 2010, 17: 51–81MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Li Z Q, Qiao Y P, Qi H S, et al. Stability of switched polynomial systems. J Syst Sci Complex, 2008, 21: 362–377MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fornasini E, Valcher M. Recent developments in Boolean networks control. J Control Decis, 2016, 3: 1–18MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cheng D Z, Qi H S. State-space analysis of Boolean networks. IEEE Trans Neural Netw, 2010, 21: 584–594CrossRefGoogle Scholar
  11. 11.
    Cheng D Z, Qi H S. A linear representation of dynamics of Boolean networks. IEEE Trans Autom Control, 2010, 55: 2251–2258MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cheng D Z, Qi H S, Li Z Q, et al. Stability and stabilization of Boolean networks. Int J Robust Nonlinear Control, 2011, 21: 134–156MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Li F F, Sun J T. Asymptotic stability of a genetic network under impulsive control. Phys Lett A, 2010, 374: 3177–3184MATHCrossRefGoogle Scholar
  14. 14.
    Li F F. Global stability at a limit cycle of switched Boolean networks under arbitrary switching signals. Neurocomputing, 2014, 133: 63–66CrossRefGoogle Scholar
  15. 15.
    Chen H, Sun J T. Global stability and stabilization of switched Boolean network with impulsive effects. Appl Math Comput, 2013, 224: 625–634MathSciNetMATHGoogle Scholar
  16. 16.
    Fornasini E, Valcher M E. On the periodic trajectories of Boolean control networks. Automatica, 2013, 49: 1506–1509MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Li H T, Wang Y Z. Consistent stabilizability of switched Boolean networks. Neural Netw, 2013, 46: 183–189MATHCrossRefGoogle Scholar
  18. 18.
    Guo Y Q, Wang P, Gui W H, et al. Set stability and set stabilization of Boolean control networks based on invariant subsets. Automatica, 2015, 61: 106–112MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Li H T, Wang Y Z, Liu Z B. Stability analysis for switched Boolean networks under arbitrary switching signals. IEEE Trans Autom Control, 2014, 59: 1978–1982MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Li H T, Wang Y Z. Robust stability and stabilisation of Boolean networks with disturbance inputs. Int J Syst Sci, 2016, 48: 750–756MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Li H T, Wang Y Z. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks. SIAM J Control Optim, 2017, 55: 3437–3457MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Meng M, Liu L, Feng G. Stability and l1 gain analysis of Boolean networks with Markovian jump parameters. IEEE Trans Autom Control, 2017, 62: 4222–4228MATHCrossRefGoogle Scholar
  23. 23.
    Jia G Y, Meng M, Feng J E. Function perturbation of mix-valued logical networks with impacts on limit sets. Neurocomputing, 2016, 207: 428–436CrossRefGoogle Scholar
  24. 24.
    Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Zhao Y, Cheng D Z, Qi H S. Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett, 2010, 59: 767–774MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Laschov D, Margaliot M. Controllability of Boolean control networks via the Perron-Frobenius theory. Automatica, 2012, 48: 1218–1223MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Chen H, Sun J T. A new approach for global controllability of higher order Boolean control network. Neural Netw, 2013, 39: 12–17MATHCrossRefGoogle Scholar
  28. 28.
    Chen H W, Sun L J, Liu Y. Partial stability and stabilisation of Boolean networks. Int J Syst Sci, 2016, 47: 2119–2127MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Li F F, Tang Y. Set stability for switched Boolean control networks. Automatica, 2017, 78: 223–230MATHCrossRefGoogle Scholar
  30. 30.
    Li Z Q, Song J L. Controllability of Boolean control networks avoiding states set. Sci China Inf Sci, 2014, 57: 032205MATHGoogle Scholar
  31. 31.
    Chen H, Sun J T. Output controllability and optimal output control of state-dependent switched Boolean control networks. Automatica, 2014, 50: 1929–1934MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Guo Y Q. Controllability of Boolean control networks with state-dependent constraints. Sci China Inf Sci, 2016, 59: 032202CrossRefGoogle Scholar
  33. 33.
    Li F F, Sun J T. Controllability of probabilistic Boolean control networks. Automatica, 2011, 47: 2765–2771MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Han M, Liu Y, Tu Y S. Controllability of Boolean control networks with time delays both in states and inputs. Neurocomputing, 2014, 129: 467–475CrossRefGoogle Scholar
  35. 35.
    Li H T, Wang Y Z. Controllability analysis and control design for switched Boolean networks with state and input constraints. SIAM J Control Optim, 2015, 53: 2955–2979MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Liu Y, Chen H W, Wu B. Controllability of Boolean control networks with impulsive effects and forbidden states. Math Method Appl Sci, 2014, 37: 1–9MATHCrossRefGoogle Scholar
  37. 37.
    Liu Y, Chen H W, Lu J Q, et al. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 2015, 52: 340–345MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Luo C, Wang X Y, Liu H. Controllability of time-delayed Boolean multiplex control networks under asynchronous stochastic update. Sci Rep, 2014, 4: 07522CrossRefGoogle Scholar
  39. 39.
    Zhang L J, Zhang K Z. Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories. Sci China Inf Sci, 2013, 56: 108201MathSciNetGoogle Scholar
  40. 40.
    Chen H W, Liang J L, Wang Z D. Pinning controllability of autonomous Boolean control networks. Sci China Inf Sci, 2016, 59: 070107CrossRefGoogle Scholar
  41. 41.
    Li H T, Wang Y Z. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917–2922MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Liu Y, Lu J Q, Wu B. Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks. ESAIM Control Optim Calc Var, 2014, 20: 158–173MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Lu J Q, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE Trans Autom Control, 2016, 61: 1658–1663MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Lu J Q, Zhong J, Ho D W C, et al. On controllability of delayed Boolean control networks. SIAM J Control Optim, 2016, 54: 475–494MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Zhang L J, Zhang K Z. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE Trans Neural Netw Learn Syst, 2013, 24: 1478–1484CrossRefGoogle Scholar
  46. 46.
    Cheng D Z, Qi H S, Liu T, et al. A note on observability of Boolean control networks. Syst Control Lett, 2016, 87: 76–82MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1390–1401MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Laschov D, Margaliot M, Even G. Observability of Boolean networks: a graph-theoretic approach. Automatica, 2013, 49: 2351–2362MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Li F F, Sun J T, Wu Q D. Observability of Boolean control networks with state time delays. IEEE Trans Neural Netw, 2011, 22: 948–954CrossRefGoogle Scholar
  50. 50.
    Li R, Yang M, Chu T G. Observability conditions of Boolean control networks. Int J Robust Nonlinear Control, 2014, 24: 2711–2723MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Zhang K Z, Zhang L J. Observability of Boolean control networks: a unified approach based on finite automata. IEEE Trans Autom Control, 2016, 61: 2733–2738MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Zhang K Z, Zhang L J, Xie L H. Finite automata approach to observability of switched Boolean control networks. Nonlinear Anal Hybrid Syst, 2016, 19: 186–197MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Zhu Q X, Liu Y, Lu J Q, et al. Observability of Boolean control networks. Sci China Inf Sci, 2018, 61: 092201MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhao Y, Cheng D Z. On controllability and stabilizability of probabilistic Boolean control networks. Sci China Inf Sci, 2014, 57: 012202MathSciNetMATHGoogle Scholar
  55. 55.
    Li R, Yang M, Chu T G. State feedback stabilization for Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1853–1857MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Li R, Yang M, Chu T G. State feedback stabilization for probabilistic Boolean networks. Automatica, 2014, 50: 1272–1278MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Bof N, Fornasini E, Valcher M E. Output feedback stabilization of Boolean control networks. Automatica, 2015, 57: 21–28MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Chen H, Li X D, Sun J T. Stabilization, controllability and optimal control of Boolean networks with impulsive effects and state constraints. IEEE Trans Autom Control, 2015, 60: 806–811MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Li F F, Sun J T. Stability and stabilization of Boolean networks with impulsive effects. Syst Control Lett, 2012, 61: 1–5MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Li F F. Pinning control design for the stabilization of Boolean networks. IEEE Trans Neural Netw Learn Syst, 2015, 27: 1585–1590MathSciNetCrossRefGoogle Scholar
  61. 61.
    Li H T, Wang Y Z. Output feedback stabilization control design for Boolean control networks. Automatica, 2013, 49: 3641–3645MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Liu Y, Cao J D, Sun L J, et al. Sampled-data state feedback stabilization of Boolean control networks. Neural Comput, 2016, 28: 778–799CrossRefGoogle Scholar
  63. 63.
    Li H T, Wang Y Z, Liu Z B. Simultaneous stabilization for a set of Boolean control networks. Syst Control Lett, 2013, 62: 1168–1174MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Li H T, Wang Y Z. Minimum-time state feedback stabilization of constrained Boolean control networks. Asian J Control, 2016, 18: 1688–1697MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Li H T, Wang Y Z. Further results on feedback stabilization control design of Boolean control networks. Automatica, 2017, 83: 303–308MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Li H T, Ding X Y, Alsaedi A, et al. Stochastic set stabilization of n-person random evolutionary Boolean games and its applications. IET Control Theory Appl, 2017, 11: 2152–2160CrossRefGoogle Scholar
  67. 67.
    Zhong J, Ho D W C, Lu J Q, et al. Global robust stability and stabilization of Boolean network with disturbances. Automatica, 2017, 84: 142–148MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Liu R J, Lu J Q, Liu Y, et al. Delayed feedback control for stabilization of Boolean control networks with state delay. IEEE Trans Neural Netw Learn Systems, 2017. doi: 10.1109/TNNLS.2017.2659386Google Scholar
  69. 69.
    Ding X Y, Li H T, Yang Q Q, et al. Stochastic stability and stabilization of n-person random evolutionary Boolean games. Appl Math Comput, 2017, 306: 1–12MathSciNetGoogle Scholar
  70. 70.
    Zhong J, Lu J Q, Liu Y, et al. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2288–2294CrossRefGoogle Scholar
  71. 71.
    Li F F, Lu X W. Complete synchronization of temporal Boolean networks. Neural Netw, 2013, 44: 72–77MATHCrossRefGoogle Scholar
  72. 72.
    Li F F, Yu Z X. Anti-synchronization of two coupled Boolean networks. J Franklin Inst, 2016, 353: 5013–5024MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Li R, Chu T G. Complete synchronization of Boolean networks. IEEE Trans Neural Netw Learn Syst, 2012, 23: 840–846CrossRefGoogle Scholar
  74. 74.
    Lu J Q, Zhong J, Li L L, et al. Synchronization analysis of master-slave probabilistic Boolean networks. Sci Rep, 2015, 5: 13437CrossRefGoogle Scholar
  75. 75.
    Chen H W, Liang J L, Liu Y, et al. Synchronisation analysis of Boolean networks based on equivalence. IET Control Theory Appl, 2015, 9: 2242–2248MathSciNetCrossRefGoogle Scholar
  76. 76.
    Liu Y, Sun L J, Lu J Q, et al. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1991–1996MathSciNetCrossRefGoogle Scholar
  77. 77.
    Li F F. Pinning control design for the synchronization of two coupled Boolean networks. IEEE Trans Circ Syst II Express Brief, 2016, 63: 309–313Google Scholar
  78. 78.
    Zhong J, Lu J Q, Huang T W, et al. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybernet, 2017, 47: 3482–3493CrossRefGoogle Scholar
  79. 79.
    Zhong J, Lu J Q, Huang T W, et al. Synchronization of master-slave Boolean networks with impulsive effects: necessary and sufficient criteria. Neurocomputing, 2014, 143: 269–274CrossRefGoogle Scholar
  80. 80.
    Chen H W, Liang J L, Lu J Q. Partial synchronization of interconnected Boolean networks. IEEE Trans Cybern, 2017, 47: 258–266CrossRefGoogle Scholar
  81. 81.
    Tian H, Wang Z S, Hou Y F, et al. State feedback controller design for synchronization of master-slave Boolean networks based on core input-state cycles. Neurocomputing, 2016, 174: 1031–1037CrossRefGoogle Scholar
  82. 82.
    Yang M, Li R, Chu T G. Controller design for disturbance decoupling of Boolean control networks. Automatica, 2013, 49: 273–277MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Meng M, Feng J E. Topological structure and the disturbance decoupling problem of singular Boolean networks. IET Control Theory Appl, 2014, 8: 1247–1255MathSciNetCrossRefGoogle Scholar
  84. 84.
    Cheng D Z. Disturbance decoupling of Boolean control networks. IEEE Trans Autom Control, 2011, 56: 2–10MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Li H T, Wang Y Z, Xie L H, et al. Disturbance decoupling control design for switched Boolean control networks. Syst Control Lett, 2014, 72: 1–6MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Zhang L Q, Feng J E, Feng X H, et al. Further results on disturbance decoupling of mix-valued logical networks. IEEE Trans Autom Control, 2014, 59: 1630–1634CrossRefGoogle Scholar
  87. 87.
    Liu Y, Li B W, Lou J G. Disturbance decoupling of singular Boolean control networks. IEEE/ACM Trans Comput Biol Bioinf, 2016, 13: 1194–1200CrossRefGoogle Scholar
  88. 88.
    Liu Z B, Wang Y Z. Disturbance decoupling of mix-valued logical networks via the semi-tensor product method. Automatica, 2012, 48: 1839–1844MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Liu Y, Li B W, Lu J Q, et al. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE Trans Autom Control, 2017. doi: 10.1109/TAC.2017.2715181Google Scholar
  90. 90.
    Laschov D, Margaliot M. A maximum principle for single-input Boolean control networks. IEEE Trans Autom Control, 2011, 56: 913–917MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Laschov D, Margaliot M. Minimum-time control of Boolean networks. SIAM J Control Optim, 2013, 51: 2869–2892MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Zhao Y, Li Z Q, Cheng D Z. Optimal control of logical control network. IEEE Trans Autom Control, 2011, 56: 1766–1776MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Fornasini E, Valcher M E. Optimal control of Boolean control networks. IEEE Trans Autom Control, 2014, 59: 1258–1270MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Liu Z B, Wang Y Z, Li H T. Two kinds of optimal controls for probabilistic mix-valued logical dynamic networks. Sci China Inf Sci, 2014, 57: 052201MathSciNetMATHGoogle Scholar
  95. 95.
    Liu Y, Chen H W, Wu B, et al. A Mayer-type optimal control for multivalued logic control networks with undesirable states. Appl Math Model, 2015, 39: 3357–3365MathSciNetCrossRefGoogle Scholar
  96. 96.
    Wu Y H, Shen T L. An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst Control Lett, 2015, 82: 108–114MATHCrossRefGoogle Scholar
  97. 97.
    Cheng D Z, Zhao Y, Xu T T. Receding horizon based feedback optimization for mix-valued logical networks. IEEE Trans Autom Control, 2015, 60: 3362–3366MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Li F F, Lu X W, Yu Z X. Optimal control algorithms for switched Boolean network. J Franklin Inst, 2014, 351: 3490–3501MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Li H T, Wang Y Z, Guo P L. State feedback based output tracking control of probabilistic Boolean networks. Inf Sci, 2016, 349: 1–11MathSciNetGoogle Scholar
  100. 100.
    Li H T, Wang Y Z, Xie L H. Output tracking control of Boolean control networks via state feedback: constant reference signal case. Automatica, 2015, 59: 54–59MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Li H T, Xie L H, Wang Y Z. Output regulation of Boolean control networks. IEEE Trans Autom Control, 2017, 62: 2993–2998MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Li H T, Wang Y Z. Output tracking of switched Boolean networks under open-loop/closed-loop switching signals. Nonlinear Anal Hybrid Syst, 2016, 22: 137–146MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Li H T, Song P P, Yang Q Q. Pinning control design for robust output tracking of k-valued logical networks. J Franklin Inst, 2017, 354: 3039–3053MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Liu Y S, Zheng Y T, Li H T, et al. Control design for output tracking of delayed Boolean control networks. J Comput Appl Math, 2018, 327: 188–195MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Li H T, Wang Y Z, Guo P L. Output reachability analysis and output regulation control design of Boolean control networks. Sci China Inf Sci, 2017, 60: 022202CrossRefGoogle Scholar
  106. 106.
    Fornasini E, Valcher M. Fault detection analysis of Boolean control networks. IEEE Trans Autom Control, 2015, 60: 2734–2739MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Zhao G D, Wang Y Z, Li H T. Invertibility of higher order k-valued logical control networks and its application in trajectory control. J Franklin Inst, 2016, 353: 4667–4679MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Li H T, Xie L H, Wang Y Z. On robust control invariance of Boolean control networks. Automatica, 2016, 68: 392–396MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    Cheng D Z, Li Z Q, Qi H S. Realization of Boolean control networks. Automatica, 2010, 46: 62–69MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Zou Y L, Zhu J D. System decomposition with respect to inputs for Boolean control networks. Automatica, 2014, 50: 1304–1309MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Zou Y L, Zhu J D. Kalman decomposition for Boolean control networks. Automatica, 2015, 54: 65–71MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Feng J E, Yao J, Cui P. Singular Boolean networks: semi-tensor product approach. Sci China Inf Sci, 2013, 56: 112203MathSciNetCrossRefGoogle Scholar
  113. 113.
    Meng M, Lam J, Feng J E, et al. l1-gain analysis and model reduction problem for Boolean control networks. Inf Sci, 2016, 348: 68–83CrossRefGoogle Scholar
  114. 114.
    Liu Y, Cao J D, Li B W, et al. Normalization and solvability of dynamic-algebraic Boolean networks. IEEE Trans Neural Netw Learn Syst, 2017. doi:10.1109/TNNLS.2017.2715060Google Scholar
  115. 115.
    Xie D, Peng H P, Li L X, et al. Semi-tensor compressed sensing. Digit Signal Process, 2016, 58: 85–92CrossRefGoogle Scholar
  116. 116.
    Jiang P, Yu H L, Wang S G. Optimization of expert system via semi-tensor product. In: Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation, Hefei, 2017CrossRefGoogle Scholar
  117. 117.
    Li H T, Ding X Y, Yang Q Q, et al. Algebraic formulation and Nash equilibrium of competitive diffusion games. Dynam Games Appl, 2017. doi: 10.1007/s13235-017-0228-4Google Scholar
  118. 118.
    Cheng D Z, Qi H S, Xue A. A survey on semi-tensor product of matrices. J Syst Sci Complex, 2007, 20: 304–322MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Cheng D Z, Qi H S, Zhao Y. Analysis and control of general logical networks-An algebraic approach. Annu Rev Control, 2012, 36: 11–25CrossRefGoogle Scholar
  120. 120.
    Cheng D Z, Qi H S, He F, et al. Semi-tensor product approach to networked evolutionary games. Control Theory Technol, 2014, 12: 198–214MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    Lu J Q, Li H T, Liu Y, et al. Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl, 2017, 11: 2040–2047CrossRefGoogle Scholar
  122. 122.
    Cheng D Z, Qi H S. Principle and range of possible applications of semi-tensor product of matrices. J Syst Sci Math Sci, 2012, 32: 1488–1496MathSciNetMATHGoogle Scholar
  123. 123.
    Cheng D Z, Qi H S. Algebraic state space approach to logical dynamic systems and its applications. Control Theory Appl, 2014, 31: 1632–1639MATHGoogle Scholar
  124. 124.
    Zhang K Z, Zhang L J, Mou S S. An application of invertibility of Boolean control networks to the control of the mammalian cell cycle. IEEE/ACM Trans Comput Biol Bioinform, 2017, 14: 225–229CrossRefGoogle Scholar
  125. 125.
    Meng M, Feng J E. Function perturbations in Boolean networks with its application in a D. melanogaster gene network. Eur J Control, 2014, 20: 87–94MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    Sun Y J, Liu F, Mei S W. Polynomial approximation of a nonlinear system and its application to power system (I): theoretical justification. Elect Mach Control, 2010, 14: 19–30Google Scholar
  127. 127.
    Sun Y J, Liu F, Mei S W. Polynomial approximation of a nonlinear system and its application to power system (II): applications. Elect Mach Control, 2010, 14: 7–12Google Scholar
  128. 128.
    Ma J, Cheng D Z, Mei S W, et al. Approximation of the boundary of power system stability region based on semi-tensor theory part one theoretical basis. Autom Elect Power Syst, 2006, 30: 1–5Google Scholar
  129. 129.
    Ma J, Cheng D, Mei S W, et al. Approximation of the boundary of power system stability region based on semi-tensor theory part two application. Automa Elect Power Syst, 2006, 30: 7–12Google Scholar
  130. 130.
    Wang Y Z, Zhang C H, Liu Z B. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems. Automatica, 2012, 48: 1227–1236MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Xu M R, Wang Y Z, Wei A R. Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling. Control Theory Technol, 2014, 12: 187–197MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    Xu M R, Wang Y Z. Conflict-free coloring problem with appliction to frequency assignment. J Shandong Univ, 2015, 45: 64–69Google Scholar
  133. 133.
    Cheng D Z. On finite potential games. Automatica, 2014, 50: 1793–1801MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    Cheng D Z, He F H, Qi H S, et al. Modeling, analysis and control of networked evolutionary games. IEEE Trans Autom Control, 2015, 60: 2402–2415MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Guo P L, Wang Y Z, Li H T. Stable degree analysis for strategy profiles of evolutionary networked games. Sci China Inf Sci, 2016, 59: 052204CrossRefGoogle Scholar
  136. 136.
    Zhao G D, Wang Y Z, Li H T. A matrix approach to modeling and optimization for dynamic games with random entrance. Appl Math Comput, 2016, 290: 9–20MathSciNetGoogle Scholar
  137. 137.
    Guo P L, Wang Y Z, Li H T. Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method. Automatica, 2013, 49: 3384–3389MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    Zhu B, Xia X H, Wu Z. Evolutionary game theoretic demand-side management and control for a class of networked smart grid. Automatica, 2016, 70: 94–100MathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    Liu X Y, Zhu J D. On potential equations of finite games. Automatica, 2016, 68: 245–253MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Xu X R, Hong Y G. Matrix approach to model matching of asynchronous sequential machines. IEEE Trans Autom Control, 2013, 58: 2974–2979MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    Xu X R, Hong Y G. Matrix expression and reachability analysis of finite automata. J Control Theory Appl, 2012, 10: 210–215MathSciNetCrossRefGoogle Scholar
  142. 142.
    Han X G, Chen Z Q, Liu Z X, et al. Calculation of siphons and minimal siphons in petri nets based on semi-tensor product of matrices. IEEE Trans Syst Man Cybern Syst, 2017, 47: 531–536CrossRefGoogle Scholar
  143. 143.
    Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product of matrices approach to reachability of finite automata with application to language recognition. Front Comput Sci, 2014, 8: 948–957MathSciNetCrossRefGoogle Scholar
  144. 144.
    Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product approach to controllability and stabilizability of finite automata. J Syst Eng Elect, 2015, 26: 134–141CrossRefGoogle Scholar
  145. 145.
    Zhao D W, Peng H P, Li L X, et al. Novel way to research nonlinear feedback shift register. Sci China Inf Sci, 2014, 57: 092114MathSciNetGoogle Scholar
  146. 146.
    Zhong J H, Lin D D. Stability of nonlinear feedback shift registers. Sci China Inf Sci, 2016, 59: 012204Google Scholar
  147. 147.
    Liu Z B, Wang Y Z, Cheng D Z. Nonsingularity of feedback shift registers. Automatica, 2015, 55: 247–253MathSciNetCrossRefGoogle Scholar
  148. 148.
    Wu Y H, Kumar M, Shen T L. A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines. Appl Therm Eng, 2016, 93: 251–259CrossRefGoogle Scholar
  149. 149.
    Wu Y H, Shen T L. Policy iteration approach to control residual gas fraction in IC engines under the framework of stochastic logical dynamics. IEEE Trans Control Syst Technol, 2017, 25: 1100–1107CrossRefGoogle Scholar
  150. 150.
    Kang M X, Wu Y H, Shen T L. Logical control approach to fuel efficiency optimization for commuting vehicles. Int J Autom Technol, 2017, 18: 535–546CrossRefGoogle Scholar
  151. 151.
    Cheng D Z, Feng J E, Lv H L. Solving fuzzy relational equations via semitensor product. IEEE Trans Fuzzy Syst, 2012, 20: 390–396CrossRefGoogle Scholar
  152. 152.
    Feng J E, Lv H L, Cheng D Z. Multiple fuzzy relation and its application to coupled fuzzy control. Asian J Control, 2013, 15: 1313–1324MathSciNetMATHCrossRefGoogle Scholar
  153. 153.
    Li H T, Wang Y Z. A matrix approach to latticized linear programming with fuzzy-relation inequality constraints. IEEE Trans Fuzzy Syst, 2013, 21: 781–788CrossRefGoogle Scholar
  154. 154.
    Duan P Y, Lv H L, Feng J E, et al. Fuzzy relation matrix control system for indoor thermal comfort. Control Theory Appl, 2013, 30: 215–221Google Scholar
  155. 155.
    Li H T, Wang Y Z. Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method. Automatica, 2012, 48: 688–693MathSciNetMATHCrossRefGoogle Scholar
  156. 156.
    Liu Z B, Wang Y Z, Li H T. New approach to derivative calculation of multi-valued logical functions with application to fault detection of digital circuits. IET Control Theory Appl, 2014, 8: 554–560MathSciNetCrossRefGoogle Scholar
  157. 157.
    Jia Y L, Yang X B. Optimization of control parameters based on genetic algorithms for spacecraft attitude tracking with input constraints. Neurocomputing, 2016, 177: 334–341CrossRefGoogle Scholar
  158. 158.
    Guo P L, Wang Y Z. Matrix expression and vaccination control for epidemic dynamics over dynamic networks. Control Theory Technol, 2016, 14: 39–48MathSciNetMATHCrossRefGoogle Scholar
  159. 159.
    Jiang P, Wang Y Z, Ge A D. Multivariable fuzzy control based mobile robot odor source localization via semitensor product. Math Probl Eng, 2015, 2015: 736720MathSciNetGoogle Scholar
  160. 160.
    Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467MathSciNetCrossRefGoogle Scholar
  161. 161.
    Akutsu T, Hayashida M, Ching W, et al. Control of Boolean networks: hardness results and algorithms for tree structured networks. J Theor Biol, 2007, 244: 670–679MathSciNetCrossRefGoogle Scholar
  162. 162.
    Zhang K Z, Zhang L J, Xie L H. Invertibility and nonsingularity of Boolean control networks. Automatica, 2015, 60: 155–164MathSciNetMATHCrossRefGoogle Scholar
  163. 163.
    Li H T, Wang Y Z. Logical matrix factorization with application to topological structure analysis of Boolean network. IEEE Trans Autom Control, 2015, 60: 1380–1385MathSciNetMATHCrossRefGoogle Scholar
  164. 164.
    Xue A C, Wu F F, Lu Q, et al. Power system dynamic security region and its approximation. IEEE Trans Circ Syst I Regul Pap, 2006, 53: 2849–2859MathSciNetMATHCrossRefGoogle Scholar
  165. 165.
    Xue A C, Mei S W, Lu Q, et al. Approximation for the dynamic security region of network-reduction power systems. Autom Elect Power Syst, 2005, 29: 18–23Google Scholar
  166. 166.
    Xue A C, Hu W, Mei S W, et al. Comparison of linear approximations for the dynamic security region of networkreduction power system. In: Proceedings of 2006 IEEE Power Engineering Society General Meeting, Montreal, 2006Google Scholar
  167. 167.
    Ye J, Mei S W, Xue A C. Transient voltage stability analysis based on second-order approximation of stability boundary. Mod Elect Power, 2005, 22: 1–6Google Scholar
  168. 168.
    Wang Y H, Mei S W. Analysis of long- and medium-term power system voltage stability based on semi-tensor product and quasi-steady-state time domain simulation. Power Syst Technol, 2011, 35: 39–44Google Scholar
  169. 169.
    Ge A D, Wang Y Z, Wei A R, et al. Control design for multi-variable fuzzy systems with application to parallel hybrid electric vehicles. Control Theory Appl, 2013, 30: 998–1004Google Scholar
  170. 170.
    Eilenberg S. Automata, Languages, and Machines. New York: Academic Press, 1976MATHGoogle Scholar
  171. 171.
    Cassandras C, Lafortune S. Introduction to Discrete Event Systems. New York: Springer-Verlag, 2008MATHCrossRefGoogle Scholar
  172. 172.
    Lamego M. Automata control systems. IET Control Theory Appl, 2007, 1: 358–371CrossRefGoogle Scholar
  173. 173.
    Womham W, Ramadge P. On the supremal contrallable sublanguage of a given language. SIAM J Control Optim, 1987, 25: 637–659MathSciNetCrossRefGoogle Scholar
  174. 174.
    Xu X R, Zhang Y Q, Hong Y G. Matrix approach to stabilizability of deterministic finite automata. In: Proceedings of American Control Conference (ACC), Washington, 2013. 3242–3247Google Scholar
  175. 175.
    Xu X R, Hong Y G. Observability analysis and observer design for finite automata via matrix approach. IET Control Theory Appl, 2013, 7: 1609–1615MathSciNetCrossRefGoogle Scholar
  176. 176.
    Choy J, Chew G H, Khoo K, et al. Cryptographic properties and application of a generalized unbalanced Feistel network structure. Cryptogr Commun, 2011, 3: 141–164MathSciNetMATHCrossRefGoogle Scholar
  177. 177.
    Moon T K, Veeranmachneni S. Linear feedback shift registers as vector quantisation codebooks. Elect Lett, 1999, 35: 1919–1920CrossRefGoogle Scholar
  178. 178.
    Hellebrand S, Rajski J, Tarnick S, et al. Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers. IEEE Trans Comput, 1995, 44: 223–233MATHCrossRefGoogle Scholar
  179. 179.
    Raychaudlhuri A. Further results on T-coloring and frequency assignment problems. SIAM J Discrete Math, 1994, 7: 605–613MathSciNetCrossRefGoogle Scholar
  180. 180.
    Box F. A heuristic technique for assigning frequencies to mobile radio nets. IEEE Trans Vehicle Technol, 1978, 27: 57–64CrossRefGoogle Scholar
  181. 181.
    Cozzens M, Wang D. The general channel assignment problem. Congr Numer, 1984, 41: 115–129MathSciNetGoogle Scholar
  182. 182.
    Zhang L Q, Feng J E. Mix-valued logic-based formation control. Int J Control, 2013, 86: 1191–1199MathSciNetMATHCrossRefGoogle Scholar
  183. 183.
    Pukdeboon C, Zinober A. Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft. J Franklin Inst, 2012, 349: 456–475MathSciNetMATHCrossRefGoogle Scholar
  184. 184.
    Sharma R, Tewari A. Optimal nonlinear tracking of spacecraft attitude maneuvers. IEEE Trans Control Syst Technol, 2004, 12: 677–682CrossRefGoogle Scholar
  185. 185.
    Zhang Z, Zhang Z X, Zhang H. Decentralized robust attitude tracking control for spacecraft networks under unkonwn ineritia mtrices. Neurocomputing, 2015, 165: 202–210CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsShandong Normal UniversityJinanChina
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.School of MathematicsShandong UniversityJinanChina

Personalised recommendations