Overview of deep space laser communication

  • Weiren Wu
  • Ming Chen
  • Zhe Zhang
  • Xiangnan Liu
  • Yuhui Dong
Review Special Focus on Deep Space Communications
  • 36 Downloads

Abstract

The deep space probe is a vital technology for observing and exploring the universe. It is thus intensifying as an aerospace research focus on an international scale. Despite improving the frequency band, the conventional microwave communication technique has difficulty satisfying the increased demand for the enormous volume of scientific data returning to the Earth. With a carrier frequency that is several orders of magnitude higher than the microwave, free-space optical communication is a robust and promising method for achieving both high bit rates and long distances in deep space communication. In this article, the history of this technology is summarized and the objective laws are formulated, while key techniques and development trends are analyzed. Finally, useful concepts and suggestions are proposed for the development of deep space laser communication in China.

Keywords

deep space communication, deep space observation development process free space communication laser communication 

References

  1. 1.
    Wu W R, Liu W W, Qiao D, et al. Investigation on the development of deep space exploration. Sci China Tech Sci, 2012, 55: 1086–1091CrossRefGoogle Scholar
  2. 2.
    Wu W R, Dong G L, Li H T, et al. Engineering and Technology of Deep Space TT&C System (in Chinese). Beijing: Science Press, 2013Google Scholar
  3. 3.
    Ning X L, Li Z, Wu W R, et al. Recursive adaptive filter using current innovation for celestial navigation during the Mars approach phase. Sci China Inf Sci, 2017, 60: 032205CrossRefGoogle Scholar
  4. 4.
    Wu W R, Yu D Y. Development of deep space exploration and its future key technologies (in Chinese). J Deep Space Explor, 2014, 1: 5–17Google Scholar
  5. 5.
    Fu K, Zhao G Q, Li X J, et al. Iterative spherical simplex unscented particle filter for CNS/Redshift integrated navigation system. Sci China Inf Sci, 2017, 60: 042201CrossRefGoogle Scholar
  6. 6.
    Cai Y G, Sun J F, Li G Y, et al. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying. Appl Opt, 2016, 55: 4514CrossRefGoogle Scholar
  7. 7.
    Ma J, Li K, Tan L Y, et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over gamma-gamma atmospheric turbulence. Appl Opt, 2015, 54: 7575–7585CrossRefGoogle Scholar
  8. 8.
    Meng L X, Li L, Zhang L Z, et al. Research on optic antenna of space laser communication networking. In: Proceedings of the 5th International Symposium on Photoelectronic Detection and Imaging, Beijing, 2013Google Scholar
  9. 9.
    Luo J J, Li H Z, Tang Y F, et al. Research on laser communication technology development for deep space exploration (in Chinese). Spacecraft Eng, 2013, 22: 94–97Google Scholar
  10. 10.
    Ma J, Xu K H, Tan L Y, et al. Analysis for mars laser communications system in USA (in Chinese). Chin J Space Sci, 2006, 26: 364–369Google Scholar
  11. 11.
    Han H S, Chen J. 21st century foreign deep space exploration development plans and their progresses (in Chinese). Spacecraft Eng, 2008, 17: 1–22Google Scholar
  12. 12.
    James R L. Deep space optical communication development program. Proc SPIE, 1987, 56: 15–16Google Scholar
  13. 13.
    Boroson D M, Robinson B S. The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions. Space Sci Rev, 2014, 185: 115–128CrossRefGoogle Scholar
  14. 14.
    Boroson D M, Robinson B S, Murphy D V, et al. Overview and results of the lunar laser communication demonstration. Proc SPIE, 2014, 8971: 89710SGoogle Scholar
  15. 15.
    Grechukhin I A, Grigoriev V N, Danileiko N O, et al. Russian free-space laser communication experiment “SLS”. In: Proceedings of the 18th International Workshop on Laser Ranging, Fujiyoshida, 2013Google Scholar
  16. 16.
    Grigoryev V, Kovalev V, Shargorodskiy V, et al. High-bit-rate laser space communication technology and results of onboard experiment. In: Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Kobe, 2014Google Scholar
  17. 17.
    Renny A F, David A K, Harold T Y, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station. Proc SPIE, 2011, 8184: 81840DGoogle Scholar
  18. 18.
    Heine F, Mühlnikel G, Zech H, et al. LCT for the European data relay system: in orbit commissioning of the alphasat and sentinel 1A LCTs. Proc SPIE, 2015, 9354: 93540GGoogle Scholar
  19. 19.
    Hideki T, Yoshihisa T, Yoshisada K, et al. Study on coding parameters for a small optical transponder. In: Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Kobe. 2014Google Scholar
  20. 20.
    Mukai T, Inagawa S, Suzuki K, et al. A study of free space laser communication experiment on the ISS Japanese experiment module for space explorations. In: Proceedings of IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, 2015Google Scholar
  21. 21.
    Hemmati H. Deep Space Optical Communications. Hoboken: John Wiley & Sons, 2005Google Scholar
  22. 22.
    Hemmati H. Status of free-space optical communications program at JPL. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2000. 101–105Google Scholar
  23. 23.
    Hemmati H, Page N A. Preliminary opto-mechanical design for the X2000 transceiver. Proc SPIE, 1999, 3615: 206–211Google Scholar
  24. 24.
    Boroson D M, Roy S B, Scozzafava J J. Overview of high rate deep space laser communications options. Proc SPIE, 2004, 5338: 37–49CrossRefGoogle Scholar
  25. 25.
    Biswas A, Boroson D M, Edwards B L. Mars laser communication demonstration: what it would have been. Proc SPIE, 2006, 6105: 610502CrossRefGoogle Scholar
  26. 26.
    Shaik K, Wonica D, Wilhelm M. Optical subnet concepts for the deep space network. Telecommun Data Acquisition Prog Rep, 1993, 42: 153–181Google Scholar
  27. 27.
    Wilson K E, Wright M, Cesarone R, et al. Cost and performance comparison of an earth-orbiting optical communication relay transceiver and a ground-based optical receiver subnet. Interpla Netw Prog Rep, 2003, 153: 1–12Google Scholar
  28. 28.
    Levitt B, Wilson K, Roberts T, et al. Hybrid optical DSN architecture: interleaved PPM concept. In: Proceedings of JPL Internal Conference, Pasadena, 2004Google Scholar
  29. 29.
    Badesha S S. SPARCL: a high altitude tethered balloon-based optical space-to-ground communication system. Proc SPIE, 2002, 4821: 181–193CrossRefGoogle Scholar
  30. 30.
    Mecherle G S, Akle W, Starkus C, et al. Direct detection optical relay satellite for deep-space communication. Proc SPIE, 1994, 2123: 134–155CrossRefGoogle Scholar
  31. 31.
    Boroson D M, Scozzafava J J, Murphy D V, et al. The lunar laser communications demonstration (LLCD). In: Proceedings of the 3rd IEEE International Conference on Space Mission Challenges for Information Technology, Pasadena, 2009. 23–28Google Scholar
  32. 32.
    Sun X L, Skillman D R, Hoffman E D, et al. Free space laser communication experiments from Earth to the lunar reconnaissance orbiter in lunar orbit. Opt Express, 2013, 21: 1865–1871CrossRefGoogle Scholar
  33. 33.
    Sun X L, Skillman D R, Hoffman E D, et al. Simultaneous laser ranging and communication from an Earth-based satellite laser ranging station to the lunar reconnaissance orbiter in lunar orbit. Proc SPIE, 2013, 8610: 861003CrossRefGoogle Scholar
  34. 34.
    Boroson D M, Robinson B S. Status of the lunar laser communication demonstration. Proc SPIE, 2013, 8610: 861002CrossRefGoogle Scholar
  35. 35.
    Robinson B S, Boroson DM, Burianek D A, et al. The NASA lunar laser communication demonstration-successful highrate laser communications to and from the Moon. In: Proceedings of International Conference on Space Operations, Pasadena, 2014. 1–7Google Scholar
  36. 36.
    Boroson D M, Robinson B S, Burianek D A, et al. Overview and status of the lunar laser communications demonstration. Proc SPIE, 2014, 8971: 89710SGoogle Scholar
  37. 37.
    Constantine S, Elgin L E, Stevens M L, et al. Design of a high-speed space modem for the lunar laser communications demonstration. Proc SPIE, 2011, 7923: 792308CrossRefGoogle Scholar
  38. 38.
    Burnside J W, Conrad S D, Pillsbury A D, et al. Design of an inertially stabilized telescope for the LLCD. Proc SPIE, 2011, 7923: 79230LCrossRefGoogle Scholar
  39. 39.
    Murphy D V, Kansky J E, Grein M E, et al. LLCD operations using the lunar lasercom ground terminal. Proc SPIE, 2014, 8971: 89710VGoogle Scholar
  40. 40.
    Grein M E, Kerman A J, Dauler E A, et al. Design of a ground-based optical receiver for the lunar laser communications demonstration. In: Proceedings of International Conference on Space Optical Systems and Applications, Santa Monica, 2011. 78–82Google Scholar
  41. 41.
    Caplan D O, Carney J J, Lafon R E, et al. Design of a 40 Watt 1.55 μm uplink transmitter for lunar laser communications. Proc SPIE, 2012, 8246: 82460MCrossRefGoogle Scholar
  42. 42.
    Schulein R T, Lafonb R E, Taylora M B, et al. Nonlinearity mitigation of a 40 Watt 1.55 micron uplink transmitter for lunar laser communications. Proc SPIE, 2013, 8610: 86100FCrossRefGoogle Scholar
  43. 43.
    Grein M E, Kerman A J, Dauler E A, et al. An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires. Proc SPIE, 2015, 9492: 949208CrossRefGoogle Scholar
  44. 44.
    Edwards B L, Israel D, Wilson K, et al. The laser communications relay demonstration. In: Proceedings of International Conference on Space Optical Systems and Applications (ICSOS), Ajaccio, 2012. 1–9Google Scholar
  45. 45.
    Edwards B, Israel D, Caroglanian A, et al. A day in the life of the laser communications relay demonstration project. In: Proceedings of International Conference on Space Operations, Daejeon, 2016. 1–13Google Scholar
  46. 46.
    Cornwell D M. NASA’s optical communications program for 2015 and beyond. Proc SPIE, 2015, 9354: 93540EGoogle Scholar
  47. 47.
    Cornwell D M. NASA’s optical communications program for future planetary and near-Earth missions. Study Rep SCaN Program, 2016, 1–2Google Scholar
  48. 48.
    Fielhauer K B, Boone B G, Raible D E. Concurrent system engineering and risk reduction for dual-band (RF/optical) spacecraft communications. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2012. 1–7Google Scholar
  49. 49.
    Raible D, Hylton A. Integrated RF/optical interplanetary networking preliminary explorations and empirical results. In: Proceedings of the 30th AIAA International Communications Satellite System Conference (ICSSC), Ottawa, 2012Google Scholar
  50. 50.
    Sodnik Z, Heese C, Carnelli I, et al. Multi-purpose laser communication system for the asteroid impact mission (AIM). In: Proceedings of IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, 2015. 1–7Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Weiren Wu
    • 1
    • 2
  • Ming Chen
    • 1
    • 3
  • Zhe Zhang
    • 2
  • Xiangnan Liu
    • 3
  • Yuhui Dong
    • 3
  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Lunar Exploration and Space Engineer CenterBeijingChina
  3. 3.Beijing Research Institute of TelemetryBeijingChina

Personalised recommendations