Advertisement

Science China Information Sciences

, 61:092204 | Cite as

A transfer alignment method for airborne distributed POS with three-dimensional aircraft flexure angles

  • Xiaolin Gong
  • Longjun Chen
  • Jiancheng Fang
  • Gang Liu
Research Paper
  • 92 Downloads

Abstract

An airborne distributed position and orientation system (POS) appears to satisfy the requirement of multi-point motion parameters measurement. This relies on transfer alignment from a high precision master system to slave systems to obtain high accuracy motion parameters of all points. A key problem for a distributed POS involves determining a method to treat the aircraft flexure appropriately and achieve high precision transfer alignment. In this study, the effect of aircraft flexure on transfer alignment accuracy for airborne earth observation is first analyzed. Based on this, the error model of transfer alignment that considers three-dimensional flexure angles are established, and a transfer alignment based on parameter identification unscented Rauch-Tung-Striebel smoother (PIURTSS) is proposed. The simulations results show that the transfer alignment method based on PIURTSS effectively improves the estimation accuracy.

Keywords

position and orientation system distribution airborne earth observation transfer alignment unscented transformation Rauch-Tung-Striebel smoother 

Notes

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61473020, 61421063, 61233005), National High Technology Research and Development Program of China (863 Program) (Grant Nos. 2015AA124001, 2015AA124002), and International (Regional) Cooperation and Communication Project (Grant No. 61661136007).

References

  1. 1.
    Xu W, Deng Y K, Wang R. Multichannel synthetic aperture radar systems with a planar antenna for future spaceborne microwave remote sensing. IEEE Aerosp Electron Syst Mag, 2012, 27: 26–30CrossRefGoogle Scholar
  2. 2.
    Scherbaum P, Brauchle J, Kraft T, et al. MACS-Mar — a real-time capable multisensor remote sensing system for maritime applications. In: Proceedings of IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Bali, 2015Google Scholar
  3. 3.
    Chen N C, Pu F L, Hu C L, et al. Scientific issues and progress of the chinese integrated earth observation sensor web project. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Manchester, 2013. 1058–1062Google Scholar
  4. 4.
    Mostafa M M R, Hutton J. Direct positioning and orientation systems: how do they work? What is the attainable accuracy? In: Proceedings of American Society of Photogrammetry and Remote Sensing Annual Meeting, St. Louis, 2001Google Scholar
  5. 5.
    Nagai M, Chen T, Shibasaki R, et al. UAV-borne 3-D mapping system by multisensor integration. IEEE Trans Geosci Remote Sens, 2009, 47: 701–708CrossRefGoogle Scholar
  6. 6.
    Chen S Y, Ma H C, Zhang Y C, et al. Boresight calibration of airborne Lidar system without ground control points. IEEE Geosci Remote Sens Lett, 2012, 9: 85–89CrossRefGoogle Scholar
  7. 7.
    Quan W, Li J L, Gong X L, et al. INS/CNS/GNSS Integrated Navigation Technology. Beijing: National Industry Press, 2015CrossRefGoogle Scholar
  8. 8.
    Huang P P, Tan W X, Su Y. MIMO-SAR imaging technology for helicopter-borne based on ARC antenna array. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Milan, 2015. 1801–1804Google Scholar
  9. 9.
    Yan X G, Spurgeon S K, Edwards C. State and parameter estimation for nonlinear delay systems using sliding mode techniques. IEEE Trans Autom Control, 2013, 58: 1023–1029MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yan X G, Lam J, Xie L H. Robust observer design for non-linear interconnected systems using structural characteristics. Int J Control, 2003, 76: 741–746MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mochalov A V, Kazantasev A V. Use of ring laser units for measurement of the moving object deformations. In: Proceedings of the 2nd International Conference on Lasers Measurement and Information Transfer, St. Petersburg, 2002. 85–92CrossRefGoogle Scholar
  12. 12.
    Groves P D. Optimising the transfer alignment of weapon INS. J Navigation. 2003, 56: 323–335CrossRefGoogle Scholar
  13. 13.
    Kain J, Cloutier J. Rapid transfer alignment for tactical weapon application. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Boston, 1989. 1290–1300Google Scholar
  14. 14.
    Spalding K. An efficient rapid transfer alignment filter. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Hilton Head Island, 1992. 1276–1286Google Scholar
  15. 15.
    Yan Z P, Lan J, Zhang Y C. Hybrid-system-based multiple-model approach for transfer alignment with dynamic flexure in IIN. In: Proceedings of International Conference on Multisensor Fusion and Information Integration for Intelligent Systems, Beijing, 2014. 1–8Google Scholar
  16. 16.
    Gebre-Egziabher D, Shao Y F. Model for JPALS/SRGPSflexure and attitude error allocation. IEEE Trans Aerosp Electron Syst, 2010, 46: 483–495CrossRefGoogle Scholar
  17. 17.
    Gao Q W, Zhao G R, Wang X B. Transfer alignment error compensator design for flexure and lever-arm effect. In: Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, 2009. 1819–1822Google Scholar
  18. 18.
    Wu W, Chen S, Qin S Q. Online estimation of ship dynamic flexure model parameters for transfer alignment. IEEE Trans Control Syst Technol, 2013, 21: 1666–1678CrossRefGoogle Scholar
  19. 19.
    Gong X L, Fan W, Fang J C. An innovationalrransfer alignment method based on parameter identification UKF for airborne distributed POS. Measurement, 2014, 58: 103–114CrossRefGoogle Scholar
  20. 20.
    Fearnhead P, Wyncoll D, Tawn J. A sequential smoothing algorithm with linear computational cost. Biometrika, 2010, 97: 447–464MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Meditch J. A survey of data smoothing for linear and nonlinear dynamic systems. Automatica, 1973, 9: 151–162MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Simon D. Optimal State Estimation, Kalman, H∞ and Nonlinear Approaches. New Jersey: John Wiley and Sons, 2006CrossRefGoogle Scholar
  23. 23.
    Sarkka S. Unscented rauch–tung–striebel smoother. IEEE Trans Autom Control, 2008, 53: 845–849MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Titterton D, Weston J. Strapdown Inertial Navigation Technology. 2nd ed. London: Institution of Engineering and Technology, 2004CrossRefGoogle Scholar
  25. 25.
    Bekir E. Introduction to Modern Navigation Systems. Singapore: World Scientific, 2007CrossRefzbMATHGoogle Scholar
  26. 26.
    Goshen-Meskin D, Bar-itzhack I Y. Unified approach to inertial navigation system error modeling. J Guid Control Dynam, 1992, 15: 648–653CrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang H T, Rong J, Zhong X C. The performance comparison and algorithm analysis of first order EKF, second order EKF and smoother for GPS/DR navigation. In: Proceedings of IEEE International Conference on Communication Technology, Hangzhou, 2008. 432–437Google Scholar
  28. 28.
    Allerton D J, Jia H M. Redundant multi-mode filter for a navigation system. IEEE Trans Aerosp Electron Syst, 2007, 43: 371–391CrossRefGoogle Scholar
  29. 29.
    Lu Y, Cheng X H. Random misalignment and lever arm vector online estimation in shipborne aircraft transfer alignment. Measurement, 2014, 47: 756–764CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolin Gong
    • 1
    • 2
  • Longjun Chen
    • 1
  • Jiancheng Fang
    • 1
    • 2
  • Gang Liu
    • 1
    • 2
  1. 1.School of Instrumentation Science and Opto-electronics EngineeringBeihang UniversityBeijingChina
  2. 2.Science and Technology on Inertial LaboratoryBeihang UniversityBeijingChina

Personalised recommendations