Multi-key FHE for multi-bit messages

Letter
  • 22 Downloads

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61472097).

Supplementary material

11432_2017_9206_MOESM1_ESM.pdf (208 kb)
Multi-Key FHE on Multi-Bit Messages

References

  1. 1.
    Gentry C. Fully homomorphic encryption using ideal lattices. Acm Symp Theory Comput, 2009, 9: 169–178MathSciNetMATHGoogle Scholar
  2. 2.
    Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from (standard) LWE. In: Proceedings of 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), Palm Springs, 2011. 97–106CrossRefGoogle Scholar
  3. 3.
    Gentry C, Sahai A, Waters B. Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in Cryptology — CRYPTO 2013. Berlin: Springer, 2013. 8042: 75–92CrossRefMATHGoogle Scholar
  4. 4.
    Hiromasa R, Abe M, Okamoto T. Packing messages and optimizing bootstrapping in GSW-FHE. In: Public-Key Cryptography — PKC 2015. Berlin: Springer, 2015. 9020: 699–715MathSciNetMATHGoogle Scholar
  5. 5.
    Li Z, Galbraith S, Ma C. Preventing adaptive key recovery attacks on the GSW levelled homomorphic encryption scheme. In: Proceedings of International Conference on Provable Security. Cham: Springer, 2016. 10005: 373–383MathSciNetMATHGoogle Scholar
  6. 6.
    Li Z, Ma C, Morais E, et al. Multi-bit leveled homomorphic encryption via dual.lwe-based. In: Proceedings of International Conference on Information Security and Cryptology. Cham: Springer, 2016. 10143: 221–242MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    López-Alt A, Tromer E, Vaikuntanathan V. On-thefly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th ACM Symposium on Theory of Computing, New York, 2012. 1219–1234Google Scholar
  8. 8.
    Clear M, McGoldrick C. Multi-identity and multi-key leveled FHE from learning with errors. In: Advances in Cryptology — CRYPTO 2015. Berlin: Springer, 2015. 9216: 630–656MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mukherjee P, Wichs D. Two round multiparty computation via multi-key FHE. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2016. 9666: 735–763MathSciNetMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina
  2. 2.Department of Computer ScienceVirginia Commonwealth UniversityVirginiaUSA

Personalised recommendations