Robust video denoising with sparse and dense noise modelings

Highlight
  • 45 Downloads

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61303168). The authors also thank the support by Youth Innovation Promotion Association CAS.

Supplementary material

11432_2017_9200_MOESM1_ESM.pdf (21.3 mb)
Supplementary material, approximately 21819 KB.

References

  1. 1.
    Boracchi G, Foi A, Egiazarian K. Video denoising using separable 4D nonlocal spatiotemporal transforms. Int Soc Opt Eng, 2011, 7870: 1–12Google Scholar
  2. 2.
    Sorel M, Bartos M. Fast Bayesian JPEG decompression and denoising with tight frame priors. IEEE Trans Image Process, 2016, 26: 490–501CrossRefGoogle Scholar
  3. 3.
    Ji H, Liu C Q, Shen Z W, et al. Robust video denoising using low rank matrix completion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, 2010. 1791–1798Google Scholar
  4. 4.
    Meng D Y, Fernando D L T. Robust matrix factorization with unknown noise. In: Proceedings of IEEE International Conference on Computer Vision, Sydney, 2013. 1337–1344Google Scholar
  5. 5.
    Cao X Y, Chen Y, Zhao Q, et al. Low-rank matrix factorization under general mixture noise distributions. In: Proceedings of IEEE International Conference on Computer Vision, Santiago, 2015. 1493–1501Google Scholar
  6. 6.
    Wright J, Peng Y G, Ma Y, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems, Vancouver, 2009. 2080–2088Google Scholar
  7. 7.
    Okutomi M, Yan S, Sugimoto S, et al. Practical lowrank matrix approximation under robust L1-norm. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, 2012. 1410–1417Google Scholar
  8. 8.
    Shen G P, Han Z, Tang Y D. Robust video denoising by low-rank decomposition and modeling noises with mixture of Gaussian. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, 2014. 2226–2231Google Scholar
  9. 9.
    Gu S H, Zhang L, Zuo W M, et al. Weighted Nuclear Norm Minimization with Application to Image Denoising. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014. 2862–2869Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Guiping Shen
    • 1
    • 2
  • Zhi Han
    • 1
  • Xi’Ai Chen
    • 1
    • 2
  • Yandong Tang
    • 1
  1. 1.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations