Abstract
We study the problem of quantum multi-unicast communication over the butterfly network in a quantum-walk architecture, where multiple arbitrary single-qubit states are transmitted simultaneously between multiple source-sink pairs. Here, by introducing quantum walks, we demonstrate a quantum multi-unicast communication scheme over the butterfly network and the inverted crown network, respectively, where the arbitrary single-qubit states can be efficiently transferred with both the probability and the state fidelity one. The presented result concerns only the butterfly network and the inverted crown network, but our techniques can be applied to a more general graph. It paves a way to combine quantum computation and quantum network communication.
This is a preview of subscription content, access via your institution.
References
- 1
Zhou Z L, Wu Q J, Huang F, et al. Fast and accurate near-duplicate image elimination for visual sensor networks. Int J Distrib Sens N, doi: 10.1177/1550147717694172
- 2
Zhang Y H, Sun X M, Wang B W. Efficient algorithm for K-Barrier coverage based on integer linear programming. China Commun, 2016, 13: 16–23
- 3
Pan Z Q, Lei J J, Zhang Y, et al. Fast motion estimation based on content property for low-complexity H. HEVC encoder. IEEE Trans Broadcast, 2016, 62: 675–684
- 4
Pan Z Q, Jin P, Lei J J, et al. Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image R, 2016, 40: 516–524
- 5
Zhang J, Tang J, Wang T B, et al. Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. Int J Sens Netw, 2017, 23: 248–257
- 6
Ahlswede R, Cai N, Li S-Y R, et al. Network information flow. IEEE Trans Inf Theory, 2000, 46: 1204–1216
- 7
Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802–803
- 8
Hayashi M, Iwama K, Nishimura H, et al. Quantum network coding. In: Proceedings of Annual Symposium on Theoretical Aspects of Computer Science. Berlin: Springer, 2007. 4393: 610–621
- 9
Hayashi M. Prior entanglement between senders enables perfect quantum network coding with modification. Phys Rev A, 2007, 76: 040301
- 10
Satoh T, Le Gall F, Imai H. Quantum network coding for quantum repeaters. Phys Rev A, 2012, 86: 032331
- 11
Soeda A, Kinjo Y, Turner P S, et al. Quantum computation over the butterfly network. Phys Rev A, 2011, 84: 012333
- 12
Li J, Chen X B, Xu G, et al. Perfect quantum network coding independent of classical network solutions. IEEE Commun Lett, 2015, 19: 115–118
- 13
Li J, Chen X B, Sun X M, et al. Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci China Inf Sci, 2016, 59: 042301
- 14
Mahdian M, Bayramzadeh R. Perfect K-pair quantum network coding using superconducting qubits. J Supercond Nov Magn, 2015, 28: 345–348
- 15
Shang T, Li J, Pei Z, et al. Quantum network coding for general repeater networks. Quantum Inf Process, 2015, 14: 3533–3552
- 16
Xu G, Chen X-B, Li J, et al. Network coding for quantum cooperative multicast. Quantum Inf Process, 2015, 14: 4297–4322
- 17
Shang T, Du G, Liu J-W. Opportunistic quantum network coding based on quantum teleportation. Quantum Inf Process, 2016, 15: 1743–1763
- 18
Kobayashi H, Le Gall F, Nishimura H, et al. Perfect quantum network communication protocol based on classical network coding. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Austin, 2010. 2686–2690
- 19
Kobayashi H, Le Gall F, Nishimura H, et al. Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), St. Petersburg, 2011. 109–113
- 20
Jain A, Franceschetti M, Meyer D A. On quantum network coding. J Math Phys, 2011, 52: 032201
- 21
Wang X-L, Chen L-K, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117: 210502
- 22
Leung D, Oppenheim J, Winter A. Quantum network communication: the butterfly and beyond. IEEE Trans Inf Theory, 2010, 56: 3478–3490
- 23
Aharonov D, Ambainis A, Kempe J, et al. Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, Hersonissos, 2001. 50–59
- 24
Ambainis A. Quantum walk algorithm for element distinctness. SIAM J Comput, 2007, 37: 210–239
- 25
Magniez F, Santha M, Szegedy M. Quantum algorithms for the triangle problem. SIAM J Comput, 2007, 37: 413–424
- 26
Tamascelli D, Zanetti L. A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J Phys A-Math Theor, 2014, 47: 325302
- 27
Childs A M, Ge Y M. Spatial search by continuous-time quantum walks on crystal lattices. Phys Rev A, 2014, 89: 052337
- 28
Babatunde A M, Cresser J, Twamley J. Using a biased quantum random walk as a quantum lumped element router. Phys Rev A, 2014, 90: 012339
- 29
Zhan X, Qin H, Bian Z-H, et al. Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys Rev A, 2014, 90: 012331
- 30
Yalçınkaya İ, Gedik Z. Qubit state transfer via discrete-time quantum walks. J Phys A-Math Theor, 2015, 48: 225302
- 31
Travaglione B C, Milburn G J. Implementing the quantum random walk. Phys Rev A, 2002, 65: 032310
- 32
Tregenna B, Flanagan W, Maile R, et al. Controlling discrete quantum walks: coins and initial states. New J Phys, 2003, 5: 83
- 33
Soeda A, Kinjo Y, Turner P S, et al. Quantum computation over the butterfly network. 2011. arXiv: 1010.4350v3
- 34
Rohde P P, Schreiber A, Stefanak M, et al. Increasing the dimensionality of quantum walks using multiple walkers. J Comput Theor Nano, 2013, 10: 1644–1652
- 35
Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61572053, 61671087, U1636106, 61602019, 61472048, 61402148), Beijing Natural Science Foundation (Grant No. 4162005), and Natural Science Foundation of Hebei Province (Grant No. F2015205114).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, Y., Yang, J., Zhou, Y. et al. Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61, 042501 (2018). https://doi.org/10.1007/s11432-017-9190-0
Received:
Revised:
Accepted:
Published:
Keywords
- network coding
- quantum network coding
- quantum walk
- state fidelity
- butterfly network
- inverted crown network