Quantum network communication: a discrete-time quantum-walk approach

  • Yuguang Yang
  • Jiajie Yang
  • Yihua Zhou
  • Weimin Shi
  • Xiubo Chen
  • Jian Li
  • Huijuan Zuo
Research Paper


We study the problem of quantum multi-unicast communication over the butterfly network in a quantum-walk architecture, where multiple arbitrary single-qubit states are transmitted simultaneously between multiple source-sink pairs. Here, by introducing quantum walks, we demonstrate a quantum multi-unicast communication scheme over the butterfly network and the inverted crown network, respectively, where the arbitrary single-qubit states can be efficiently transferred with both the probability and the state fidelity one. The presented result concerns only the butterfly network and the inverted crown network, but our techniques can be applied to a more general graph. It paves a way to combine quantum computation and quantum network communication.


network coding quantum network coding quantum walk state fidelity butterfly network inverted crown network 



This work was supported by National Natural Science Foundation of China (Grant Nos. 61572053, 61671087, U1636106, 61602019, 61472048, 61402148), Beijing Natural Science Foundation (Grant No. 4162005), and Natural Science Foundation of Hebei Province (Grant No. F2015205114).


  1. 1.
    Zhou Z L, Wu Q J, Huang F, et al. Fast and accurate near-duplicate image elimination for visual sensor networks. Int J Distrib Sens N, doi: 10.1177/1550147717694172Google Scholar
  2. 2.
    Zhang Y H, Sun X M, Wang B W. Efficient algorithm for K-Barrier coverage based on integer linear programming. China Commun, 2016, 13: 16–23CrossRefGoogle Scholar
  3. 3.
    Pan Z Q, Lei J J, Zhang Y, et al. Fast motion estimation based on content property for low-complexity H. HEVC encoder. IEEE Trans Broadcast, 2016, 62: 675–684CrossRefGoogle Scholar
  4. 4.
    Pan Z Q, Jin P, Lei J J, et al. Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image R, 2016, 40: 516–524CrossRefGoogle Scholar
  5. 5.
    Zhang J, Tang J, Wang T B, et al. Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. Int J Sens Netw, 2017, 23: 248–257CrossRefGoogle Scholar
  6. 6.
    Ahlswede R, Cai N, Li S-Y R, et al. Network information flow. IEEE Trans Inf Theory, 2000, 46: 1204–1216MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802–803CrossRefzbMATHGoogle Scholar
  8. 8.
    Hayashi M, Iwama K, Nishimura H, et al. Quantum network coding. In: Proceedings of Annual Symposium on Theoretical Aspects of Computer Science. Berlin: Springer, 2007. 4393: 610–621Google Scholar
  9. 9.
    Hayashi M. Prior entanglement between senders enables perfect quantum network coding with modification. Phys Rev A, 2007, 76: 040301MathSciNetCrossRefGoogle Scholar
  10. 10.
    Satoh T, Le Gall F, Imai H. Quantum network coding for quantum repeaters. Phys Rev A, 2012, 86: 032331CrossRefGoogle Scholar
  11. 11.
    Soeda A, Kinjo Y, Turner P S, et al. Quantum computation over the butterfly network. Phys Rev A, 2011, 84: 012333CrossRefGoogle Scholar
  12. 12.
    Li J, Chen X B, Xu G, et al. Perfect quantum network coding independent of classical network solutions. IEEE Commun Lett, 2015, 19: 115–118CrossRefGoogle Scholar
  13. 13.
    Li J, Chen X B, Sun X M, et al. Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci China Inf Sci, 2016, 59: 042301CrossRefGoogle Scholar
  14. 14.
    Mahdian M, Bayramzadeh R. Perfect K-pair quantum network coding using superconducting qubits. J Supercond Nov Magn, 2015, 28: 345–348CrossRefGoogle Scholar
  15. 15.
    Shang T, Li J, Pei Z, et al. Quantum network coding for general repeater networks. Quantum Inf Process, 2015, 14: 3533–3552MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Xu G, Chen X-B, Li J, et al. Network coding for quantum cooperative multicast. Quantum Inf Process, 2015, 14: 4297–4322MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shang T, Du G, Liu J-W. Opportunistic quantum network coding based on quantum teleportation. Quantum Inf Process, 2016, 15: 1743–1763MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kobayashi H, Le Gall F, Nishimura H, et al. Perfect quantum network communication protocol based on classical network coding. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Austin, 2010. 2686–2690Google Scholar
  19. 19.
    Kobayashi H, Le Gall F, Nishimura H, et al. Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), St. Petersburg, 2011. 109–113Google Scholar
  20. 20.
    Jain A, Franceschetti M, Meyer D A. On quantum network coding. J Math Phys, 2011, 52: 032201MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang X-L, Chen L-K, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117: 210502CrossRefGoogle Scholar
  22. 22.
    Leung D, Oppenheim J, Winter A. Quantum network communication: the butterfly and beyond. IEEE Trans Inf Theory, 2010, 56: 3478–3490MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Aharonov D, Ambainis A, Kempe J, et al. Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, Hersonissos, 2001. 50–59zbMATHGoogle Scholar
  24. 24.
    Ambainis A. Quantum walk algorithm for element distinctness. SIAM J Comput, 2007, 37: 210–239MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Magniez F, Santha M, Szegedy M. Quantum algorithms for the triangle problem. SIAM J Comput, 2007, 37: 413–424MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tamascelli D, Zanetti L. A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J Phys A-Math Theor, 2014, 47: 325302MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Childs A M, Ge Y M. Spatial search by continuous-time quantum walks on crystal lattices. Phys Rev A, 2014, 89: 052337CrossRefGoogle Scholar
  28. 28.
    Babatunde A M, Cresser J, Twamley J. Using a biased quantum random walk as a quantum lumped element router. Phys Rev A, 2014, 90: 012339CrossRefGoogle Scholar
  29. 29.
    Zhan X, Qin H, Bian Z-H, et al. Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys Rev A, 2014, 90: 012331CrossRefGoogle Scholar
  30. 30.
    Yalçınkaya İ, Gedik Z. Qubit state transfer via discrete-time quantum walks. J Phys A-Math Theor, 2015, 48: 225302MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Travaglione B C, Milburn G J. Implementing the quantum random walk. Phys Rev A, 2002, 65: 032310CrossRefGoogle Scholar
  32. 32.
    Tregenna B, Flanagan W, Maile R, et al. Controlling discrete quantum walks: coins and initial states. New J Phys, 2003, 5: 83CrossRefGoogle Scholar
  33. 33.
    Soeda A, Kinjo Y, Turner P S, et al. Quantum computation over the butterfly network. 2011. arXiv: 1010.4350v3Google Scholar
  34. 34.
    Rohde P P, Schreiber A, Stefanak M, et al. Increasing the dimensionality of quantum walks using multiple walkers. J Comput Theor Nano, 2013, 10: 1644–1652CrossRefGoogle Scholar
  35. 35.
    Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuguang Yang
    • 1
    • 2
  • Jiajie Yang
    • 1
  • Yihua Zhou
    • 1
  • Weimin Shi
    • 1
  • Xiubo Chen
    • 3
  • Jian Li
    • 4
  • Huijuan Zuo
    • 5
  1. 1.Faculty of Information TechnologyBeijing University of TechnologyBeijingChina
  2. 2.State Key Laboratory of Information Security (Institute of Information Engineering, Chinese Academy of Sciences)BeijingChina
  3. 3.Information Security Center, State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.School of ComputerBeijing University of Posts and TelecommunicationsBeijingChina
  5. 5.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhuangChina

Personalised recommendations