Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum network communication: a discrete-time quantum-walk approach

  • 107 Accesses

  • 9 Citations

Abstract

We study the problem of quantum multi-unicast communication over the butterfly network in a quantum-walk architecture, where multiple arbitrary single-qubit states are transmitted simultaneously between multiple source-sink pairs. Here, by introducing quantum walks, we demonstrate a quantum multi-unicast communication scheme over the butterfly network and the inverted crown network, respectively, where the arbitrary single-qubit states can be efficiently transferred with both the probability and the state fidelity one. The presented result concerns only the butterfly network and the inverted crown network, but our techniques can be applied to a more general graph. It paves a way to combine quantum computation and quantum network communication.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Zhou Z L, Wu Q J, Huang F, et al. Fast and accurate near-duplicate image elimination for visual sensor networks. Int J Distrib Sens N, doi: 10.1177/1550147717694172

  2. 2

    Zhang Y H, Sun X M, Wang B W. Efficient algorithm for K-Barrier coverage based on integer linear programming. China Commun, 2016, 13: 16–23

  3. 3

    Pan Z Q, Lei J J, Zhang Y, et al. Fast motion estimation based on content property for low-complexity H. HEVC encoder. IEEE Trans Broadcast, 2016, 62: 675–684

  4. 4

    Pan Z Q, Jin P, Lei J J, et al. Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image R, 2016, 40: 516–524

  5. 5

    Zhang J, Tang J, Wang T B, et al. Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. Int J Sens Netw, 2017, 23: 248–257

  6. 6

    Ahlswede R, Cai N, Li S-Y R, et al. Network information flow. IEEE Trans Inf Theory, 2000, 46: 1204–1216

  7. 7

    Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802–803

  8. 8

    Hayashi M, Iwama K, Nishimura H, et al. Quantum network coding. In: Proceedings of Annual Symposium on Theoretical Aspects of Computer Science. Berlin: Springer, 2007. 4393: 610–621

  9. 9

    Hayashi M. Prior entanglement between senders enables perfect quantum network coding with modification. Phys Rev A, 2007, 76: 040301

  10. 10

    Satoh T, Le Gall F, Imai H. Quantum network coding for quantum repeaters. Phys Rev A, 2012, 86: 032331

  11. 11

    Soeda A, Kinjo Y, Turner P S, et al. Quantum computation over the butterfly network. Phys Rev A, 2011, 84: 012333

  12. 12

    Li J, Chen X B, Xu G, et al. Perfect quantum network coding independent of classical network solutions. IEEE Commun Lett, 2015, 19: 115–118

  13. 13

    Li J, Chen X B, Sun X M, et al. Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci China Inf Sci, 2016, 59: 042301

  14. 14

    Mahdian M, Bayramzadeh R. Perfect K-pair quantum network coding using superconducting qubits. J Supercond Nov Magn, 2015, 28: 345–348

  15. 15

    Shang T, Li J, Pei Z, et al. Quantum network coding for general repeater networks. Quantum Inf Process, 2015, 14: 3533–3552

  16. 16

    Xu G, Chen X-B, Li J, et al. Network coding for quantum cooperative multicast. Quantum Inf Process, 2015, 14: 4297–4322

  17. 17

    Shang T, Du G, Liu J-W. Opportunistic quantum network coding based on quantum teleportation. Quantum Inf Process, 2016, 15: 1743–1763

  18. 18

    Kobayashi H, Le Gall F, Nishimura H, et al. Perfect quantum network communication protocol based on classical network coding. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Austin, 2010. 2686–2690

  19. 19

    Kobayashi H, Le Gall F, Nishimura H, et al. Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), St. Petersburg, 2011. 109–113

  20. 20

    Jain A, Franceschetti M, Meyer D A. On quantum network coding. J Math Phys, 2011, 52: 032201

  21. 21

    Wang X-L, Chen L-K, Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117: 210502

  22. 22

    Leung D, Oppenheim J, Winter A. Quantum network communication: the butterfly and beyond. IEEE Trans Inf Theory, 2010, 56: 3478–3490

  23. 23

    Aharonov D, Ambainis A, Kempe J, et al. Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, Hersonissos, 2001. 50–59

  24. 24

    Ambainis A. Quantum walk algorithm for element distinctness. SIAM J Comput, 2007, 37: 210–239

  25. 25

    Magniez F, Santha M, Szegedy M. Quantum algorithms for the triangle problem. SIAM J Comput, 2007, 37: 413–424

  26. 26

    Tamascelli D, Zanetti L. A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J Phys A-Math Theor, 2014, 47: 325302

  27. 27

    Childs A M, Ge Y M. Spatial search by continuous-time quantum walks on crystal lattices. Phys Rev A, 2014, 89: 052337

  28. 28

    Babatunde A M, Cresser J, Twamley J. Using a biased quantum random walk as a quantum lumped element router. Phys Rev A, 2014, 90: 012339

  29. 29

    Zhan X, Qin H, Bian Z-H, et al. Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys Rev A, 2014, 90: 012331

  30. 30

    Yalçınkaya İ, Gedik Z. Qubit state transfer via discrete-time quantum walks. J Phys A-Math Theor, 2015, 48: 225302

  31. 31

    Travaglione B C, Milburn G J. Implementing the quantum random walk. Phys Rev A, 2002, 65: 032310

  32. 32

    Tregenna B, Flanagan W, Maile R, et al. Controlling discrete quantum walks: coins and initial states. New J Phys, 2003, 5: 83

  33. 33

    Soeda A, Kinjo Y, Turner P S, et al. Quantum computation over the butterfly network. 2011. arXiv: 1010.4350v3

  34. 34

    Rohde P P, Schreiber A, Stefanak M, et al. Increasing the dimensionality of quantum walks using multiple walkers. J Comput Theor Nano, 2013, 10: 1644–1652

  35. 35

    Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61572053, 61671087, U1636106, 61602019, 61472048, 61402148), Beijing Natural Science Foundation (Grant No. 4162005), and Natural Science Foundation of Hebei Province (Grant No. F2015205114).

Author information

Correspondence to Yuguang Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, J., Zhou, Y. et al. Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61, 042501 (2018). https://doi.org/10.1007/s11432-017-9190-0

Download citation

Keywords

  • network coding
  • quantum network coding
  • quantum walk
  • state fidelity
  • butterfly network
  • inverted crown network