Mutual authenticated quantum no-key encryption scheme over private quantum channel


In this paper, we realize Shamir’s no-key protocol via quantum computation of Boolean functions and a private quantum channel. The proposed quantum no-key protocol has three rounds and provides mutual data origin authentication. Random Boolean functions are used to create entanglement and guarantee that any adversary without keys cannot pass the authentication. Thus, our protocol can resist the man-in-the-middle attack. A security analysis has shown that pieces of ciphertexts of the three rounds are completely mixed state. This property ensures no adversary can get any information about the sent message or authentication keys. Therefore, our protocol is unconditionally secure and its authentication keys can be reused.

This is a preview of subscription content, access via your institution.


  1. 1

    Menezes G J, van Oorschot P C, Vanstone S A. Handbook of Applied Cryptography. Boca Raton: Crc Press, 1997

    Google Scholar 

  2. 2

    Yang L, Wu L A. Transmit classical and quantum information secretly. 2002, arXiv: quant-ph/0203089

    Google Scholar 

  3. 3

    Yang L, Wu L A, Liu S H. Quantum three-pass cryptography protocol. In: Proceedings of SPIE 2002 Quantum Optics in Computing and Communications, SPIE, 2009. 4917: 107–112

    Google Scholar 

  4. 4

    Kanamori Y, Yoo S M, Mohammad A S. A quantum no-key protocol for secure data communication. In: Proceedings of Proc 43rd Annual Southeast Regional Conference. New York: ACM Press, 2005. 2: 92–93

    Google Scholar 

  5. 5

    Kak S. A three stage quantum cryptography protocol. Found Phys Lett, 2006, 19: 293–296

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Kye W H, Kim C M, Kim M S, et al. Quantum key distribution with blind polarization bases. Phys Rev Lett, 2005, 95: 040501

    Article  Google Scholar 

  7. 7

    Yang L. Quantum no-key protocol for direct and secure transmission of quantum and classical messages. 2003, arXiv: quant-ph/0309200

    Google Scholar 

  8. 8

    Wu Y, Yang L. Practical quantum no-key protocol with identification. In: Proceedings of the 5th International Conference on Information Assurance and Security, Xi’an, 2009. 540–543

    Google Scholar 

  9. 9

    Yang L. Quantum no-key protocol for secure communication of classical message. 2013, arXiv: 1306.3388

    Google Scholar 

  10. 10

    Boykin P, Roychowdhury V. Optimal encryption of quantum bits. Phys Rev A, 2003, 67: 042317

    Article  Google Scholar 

  11. 11

    Ambainis A, Mosca M, Tapp A, et al. Private quantum channels. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Redondo Beach: IEEE Computer Society Press, 2000. 547–553

    Google Scholar 

  12. 12

    Nayak A, Sen P. Invertible quantum operations and perfect encryption of quantum states. Quantum Inf Comput, 2007, 7: 103–110

    MathSciNet  MATH  Google Scholar 

  13. 13

    Wu C, Yang L. Qubit-wise teleportation and its application in public-key secret communication. Sci China Inf Sci, 2017, 60: 032501

    Article  Google Scholar 

  14. 14

    Bennett C H, Brassard G, Breidbart S. Quantum cryptography II: how to re-use a one-time pad safely even if P= NP. Natural Comput, 2014, 13: 453–458

    MathSciNet  Article  MATH  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant No. 61672517), National Cryptography Development Fund (Grant No. MMJJ20170108), National Key Research and Development Program of China (Grant No. 2017YFB0802502), and Fundamental Theory and Cutting Edge Technology Research Program of Institute of Information Engineering, CAS (Grant No. Y7Z0301103).

Author information



Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wu, C. & Xie, H. Mutual authenticated quantum no-key encryption scheme over private quantum channel. Sci. China Inf. Sci. 61, 022502 (2018).

Download citation


  • quantum cryptography
  • no-key protocol
  • quantum entanglement
  • information-theoretical security
  • private quantum channel