Network topology inference from incomplete observation data

Highlight
  • 55 Downloads

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61572041), Beijing Natural Science Foundation (Grant No. 4152023), National High Technology Research and Development Program of China (863 Program) (Grant No. 2014AA015103).

Supplementary material

11432_2017_9154_MOESM1_ESM.pdf (550 kb)
Supplementary material, approximately 218 KB.

References

  1. 1.
    Rodriguez M G, Leskovec J, Krause A. Inferring networks of diffusion and influence. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2010. 1019–1028Google Scholar
  2. 2.
    Rodriguez M G, Balduzzi D, Schölkopf B. Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th International Conference on Machine Learning, Bellevue, 2011. 561–568Google Scholar
  3. 3.
    Amin K, Heidari H, Kearns M. Learning from contagion (without timestamps). In: Proceedings of the 31st International Conference on Machine Learning, Beijing, 2014. 1845–1853Google Scholar
  4. 4.
    Sefer E, Kingsford C. Convex risk minimization to infer networks from probabilistic diffusion data at multiple scales. In: Proceedings of 2015 IEEE 31st International Conference, Seoul, 2015. 663–674Google Scholar
  5. 5.
    Dou P, Du S Z, Song G J. Inferring diffusion network on incomplete cascade data. In: Proceedings of the 17th International Conference on Web-Age Information Management, Nanchang, 2016. 325–337Google Scholar
  6. 6.
    Zong B, Wu Y H, Singh A K, et al. Inferring the underlying structure of information cascades. In: Proceedings of 2013 IEEE 13th International Conference on Data Mining, Brussels, 2012. 1218–1223Google Scholar
  7. 7.
    Lokhov A Y. Reconstructing parameters of spreading models from partial observations. In: Proceedings of the 29th Conference on Neural Information Processing Systems, Barcelona, 2016. 3459–3467Google Scholar
  8. 8.
    Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2003. 137–146Google Scholar
  9. 9.
    Khuller S, Moss A, Naor J S. The budgeted maximum coverage problem. Inf Process Lett, 1999, 70: 39–45MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Machine Perception (MOE)Peking UniversityBeijingChina

Personalised recommendations