Integral sliding mode control design for nonlinear stochastic systems under imperfect quantization

Abstract

This paper presents a sliding mode control (SMC) scheme via output-feedback approach for Itô stochastic systems under a quantization mechanism. The quantization process is formulated with the imperfection that random packet loss occurs at the logarithmic quantizer. A Luenberger observer is designed, based on the packet loss rate and the imperfect quantized measurement. A novel SMC law is synthesized by utilization of an integral sliding surface. The stochastic stability of the resulting closed-loop system is analyzed in terms of Lyapunov stability, and a set of solvable matrix inequalities are established for practical application requirements. Finally, a simulation example is employed for the illustration of the effectiveness of the presented control scheme.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Bemporad A, Heemels M, Johansson M. Networked Control Systems. Berlin: Springer, 2010

    Book  MATH  Google Scholar 

  2. 2

    Montestruque L A, Antsaklis P J. On the model-based control of networked systems. Automatica, 2003, 39: 1837–1843

    Article  MATH  MathSciNet  Google Scholar 

  3. 3

    Tipsuwan Y, Chow M Y. Control methodologies in networked control systems. Control Eng Pract, 2003, 11: 1099–1111

    Article  Google Scholar 

  4. 4

    Hespanha J P, Naghshtabrizi P, Xu Y. A survey of recent results in networked control systems. Proc IEEE, 2007, 95: 138–162

    Article  Google Scholar 

  5. 5

    Xie L, Xie L H. Stability analysis and stabilization of networked linear systems with random packet losses. Sci China Inf Sci, 2009, 52: 2053–2073

    Article  MATH  MathSciNet  Google Scholar 

  6. 6

    Dong H, Wang Z, Shen B, et al. Variance-constrained H∞ control for a class of nonlinear stochastic discrete timevarying systems: the event-triggered design. Automatica, 2016, 72: 28–36

    Article  MATH  MathSciNet  Google Scholar 

  7. 7

    Donkers M, Heemels W, Bernardini D, et al. Stability analysis of stochastic networked control systems. Automatica, 2012, 48: 917–925

    Article  MATH  MathSciNet  Google Scholar 

  8. 8

    Niu B, Karimi H R, Wang H, et al. Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method. IEEE Trans Syst Man Cybern Syst, 2017, 47: 1371–1382

    Article  Google Scholar 

  9. 9

    Gao H, Chen T. H∞ estimation for uncertain systems with limited communication capacity. IEEE Trans Autom Control, 2007, 52: 2070–2084

    Article  MATH  MathSciNet  Google Scholar 

  10. 10

    Lunze J, Lehmann D. A state-feedback approach to event-based control. Automatica, 2010, 46: 211–215

    Article  MATH  MathSciNet  Google Scholar 

  11. 11

    Mairet F, Gouzé J L. Hybrid control of a bioreactor with quantized measurements. IEEE Trans Autom Control, 2016, 61: 1385–1390

    Article  MATH  MathSciNet  Google Scholar 

  12. 12

    Hayakawa T, Ishii H, Tsumura K. Adaptive quantized control for linear uncertain discrete-time systems. Automatica, 2009, 45: 692–700

    Article  MATH  MathSciNet  Google Scholar 

  13. 13

    Delchamps D F. Stabilizing a linear system with quantized state feedback. IEEE Trans Autom Control, 1990, 35: 916–924

    Article  MATH  MathSciNet  Google Scholar 

  14. 14

    Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems. IEEE Trans Autom Control, 2000, 45: 1279–1289

    Article  MATH  MathSciNet  Google Scholar 

  15. 15

    Fu M, Xie L. The sector bound approach to quantized feedback control. IEEE Trans Autom Control, 2005, 50: 1698–1711

    Article  MATH  MathSciNet  Google Scholar 

  16. 16

    Kameneva T, Nešić D. Robustness of quantized control systems with mismatch between coder/decoder initializations. Automatica, 2009, 45: 817–822

    Article  MATH  MathSciNet  Google Scholar 

  17. 17

    Wang Z, Shen B, Shu H, et al. Quantized H∞ control for nonlinear stochastic time-delay systems with missing measurements. IEEE Trans Autom Control, 2012, 57: 1431–1444

    Article  MATH  MathSciNet  Google Scholar 

  18. 18

    Liu K, Fridman E, Johansson K H, et al. Quantized control under round-robin communication protocol. IEEE Trans Ind Electron, 2016, 63: 4461–4471

    Article  Google Scholar 

  19. 19

    Yu X, Lin Y. Adaptive backstepping quantized control for a class of nonlinear systems. IEEE Trans Autom Control, 2017, 62: 981–985

    Article  MATH  MathSciNet  Google Scholar 

  20. 20

    Li F, Shi P, Wu L, et al. Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems. IEEE Trans Ind Electron, 2015, 62: 2330–2340

    Article  Google Scholar 

  21. 21

    Edwards C, Colet E F, Fridman L. Advances in Variable Structure and Sliding Mode Control. Berlin: Springer, 2006

    Book  MATH  Google Scholar 

  22. 22

    Li S, Zhou M, Yu X. Design and implementation of terminal sliding mode control method for pmsm speed regulation system. IEEE Trans Ind Inf, 2013, 9: 1879–1891

    Article  Google Scholar 

  23. 23

    Yu X, Kaynak O. Sliding-mode control with soft computing: a survey. IEEE Trans Ind Electron, 2009, 56: 3275–3285

    Article  Google Scholar 

  24. 24

    Liu J, Vazquez S, Wu L, et al. Extended state observer based sliding mode control for three-phase power converters. IEEE Trans Ind Electron, 2017, 64: 22–31

    Article  Google Scholar 

  25. 25

    Vazquez S, Marquez A, Aguilera R, et al. Predictive optimal switching sequence direct power control for grid-connected power converters. IEEE Trans Ind Electron, 2015, 62: 2010–2020

    Article  Google Scholar 

  26. 26

    Yu X, Zhihong M. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans Circuits Syst I Fundem Theory Appl, 2002, 49: 261–264

    Article  MATH  MathSciNet  Google Scholar 

  27. 27

    Shi P, Xia Y, Liu G, et al. On designing of sliding-mode control for stochastic jump systems. IEEE Trans Autom Control, 2006, 51: 97–103

    Article  MATH  MathSciNet  Google Scholar 

  28. 28

    Wu L, Zheng W X, Gao H. Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans Autom Control, 2013, 58: 785–791

    Article  MATH  MathSciNet  Google Scholar 

  29. 29

    Shi P, Liu M, Zhang L. Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans Ind Electron, 2015, 62: 5910–5918

    Article  Google Scholar 

  30. 30

    Feng Y, Yu X, Han F. On nonsingular terminal sliding-mode control of nonlinear systems. Automatica, 2013, 49: 1715–1722

    Article  MATH  MathSciNet  Google Scholar 

  31. 31

    Utkin V I. Sliding Modes in Control and Optimization. Berlin: Springer-Verlag, 2013

    MATH  Google Scholar 

  32. 32

    Hao L Y, Park J H, Ye D. Integral sliding mode fault-tolerant control for uncertain linear systems over networks with signals quantization. IEEE Trans Neural Netw Learn Syst, 2017, 28: 2088–2100

    Article  MathSciNet  Google Scholar 

  33. 33

    Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Trans Autom Control, 2001, 46: 1384–1400

    Article  MATH  MathSciNet  Google Scholar 

  34. 34

    Khasminskii R. Stochastic Stability of Differential Equations. Berlin: Springer, 2011

    MATH  Google Scholar 

  35. 35

    Wang Z, Yang F, Ho D W C, et al. Robust H∞ control for networked systems with random packet losses. IEEE Trans Syst Man Cybern Part B Cybern, 2007, 37: 916–924

    Article  Google Scholar 

  36. 36

    Boyd S, Ghaoui L E, Feron E, et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994

    Book  MATH  Google Scholar 

  37. 37

    Yossef T, Shaked U, Yaesh I. Simplifed adaptive control of F16 aircraft pitch and angle-of-attack loops. In: Proceedings of the 44th Israel Annual Conference on Aerospace Sciences, Haifa, 1998

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61525303, 61503099), Top-Notch Young Talents Program of China (Ligang Wu), China Postdoctoral Science Foundation Funded Projects (Grant Nos. 2015M570293, 2016T90291), and Self-Planned Task of State Key Laboratory of Robotics and System (HIT) (Grant No. 201713A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ligang Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Luo, W., Liu, J. et al. Integral sliding mode control design for nonlinear stochastic systems under imperfect quantization. Sci. China Inf. Sci. 60, 120206 (2017). https://doi.org/10.1007/s11432-017-9148-2

Download citation

Keywords

  • stochastic systems
  • quantized control
  • sliding mode control
  • observer design
  • packet loss