Distributed cooperative anti-disturbance control of multi-agent systems: an overview

Abstract

This paper reviews some main results and recent progress in distributed cooperative anti-disturbance control (DCADC) of multi-agent systems. Compared with anti-disturbance control in single systems, DCADC is more challenging because of the existence of coupling in multi-agent systems and the aim is to design distributed cooperative control based on the local information of each agent. This paper is concerned with some kinds of DCADC methods, such as distributed cooperative variable structure control, distributed cooperative sliding mode control, distributed cooperative disturbance-observer-based control, and distributed cooperative output regulation control approaches. Some future research topics regarding DCADC methods are also pointed out.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Rao S, Ghose D. Sliding mode control-based autopilots for leaderless consensus of unmanned aerial vehicles. IEEE Trans Control Syst Technol, 2014, 22: 1964–1972

    Article  Google Scholar 

  2. 2

    Li P, Yu X, Peng X Y, et al. Fault-tolerant cooperative control for multiple UAVs based on sliding mode techniques. Sci China Inf Sci, 2017, 60: 070204

    Article  Google Scholar 

  3. 3

    Cortés J, Bullo F. Coordination and geometric optimization via distributed dynamical systems. SIAM J Control Opt, 2005, 44: 1543–1574

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Schaub H, Vadali S R, Junkins J L, et al. Spacecraft formation flying control using mean orbit elements. J Astronaut Sci, 2000, 48: 69–87

    Google Scholar 

  5. 5

    Bhatta P, Fiorelli E, Lekien F, et al. Coordination of an underwater glider fleet for adaptive ocean sampling. In: Proceedings of International Advanced Robotics Programmed, Genoa, 2005

    Google Scholar 

  6. 6

    Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control, 2004, 49: 1520–1533

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control, 2006, 51: 401–420

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Olfati-Saber R, Murray R M. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 2007, 95: 215–233

    Article  Google Scholar 

  9. 9

    Yu W W, Wen G H, Chen G R, et al. Distributed Cooperative Control of Multi-agent Systems. Singapore: Wiley & Higher Education Press, 2016

    Google Scholar 

  10. 10

    Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control, 2005, 50: 655–661

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Wang Z H, Zhang H S, Fu M Y, et al. Consensus for high-order multi-agent systems with communication delay. Sci China Inf Sci, 2017, 60: 092204

    MathSciNet  Article  Google Scholar 

  12. 12

    Chen J, Gan M G, Huang J, et al. Formation control of multiple Euler-Lagrange systems via nullspace-based behavioral control. Sci China Inf Sci, 2016, 59: 010202

    Google Scholar 

  13. 13

    Yu W W, Chen G R, Cao M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica, 2010, 46: 1089–1095

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Chen W H. Disturbance observer based control for nonlinear systems. IEEE Trans Mechatron, 2004, 9: 706–710

    Article  Google Scholar 

  15. 15

    Edwards C, Spurgeon S. Sliding Mode Control: Theory and Applications. Boca Raton: CRC Press, 1998

    Google Scholar 

  16. 16

    Huang Y, Xue W. Active disturbance rejection control: methodology and theoretical analysis. ISA Trans, 2014, 53: 963–976

    Article  Google Scholar 

  17. 17

    Gao Z. Active disturbance rejection control: a paradigm shift in feedback control system design. In: Proceedings of American Control Conference, Minneapolis, 2006. 2399–2405

    Google Scholar 

  18. 18

    Tang S, Yang Q H, Qian S K, et al. Height and attitude active disturbance rejection controller design of a small-scale helicopter. Sci China Inf Sci, 2015, 58: 032202

    MATH  Google Scholar 

  19. 19

    Francis B A. A Course in H Control Theory. Berlin: Springer-Verlag, 1987

    Google Scholar 

  20. 20

    Fierro R, Lewis F L. Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, 1995. 3805–3810

    Google Scholar 

  21. 21

    Ioannou P A, Sun J. Robust Adaptive Control. Mineola: Dover Publications, 2012

    Google Scholar 

  22. 22

    Han J. From PID to active disturbance rejection control. IEEE Trans Ind Electron, 2009, 56: 900–906

    Article  Google Scholar 

  23. 23

    Huang J. Remarks on synchronized output regulation of linear networked systems. IEEE Trans Autom Control, 2011, 56: 630–631

    Article  MATH  Google Scholar 

  24. 24

    Wang X, Hong Y, Huang J, et al. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans Autom Control, 2010, 55: 2891–2895

    MathSciNet  Article  MATH  Google Scholar 

  25. 25

    Kim H, Shim H, Seo J H. Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans Autom Control, 2011, 56: 200–206

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Cao Y C, Yu W W, Ren W, et al. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans Ind Inf, 2013, 9: 427–438

    Article  Google Scholar 

  27. 27

    Chen W H, Yang J, Guo L, et al. Disturbance observer-based control and related methods: an overview. IEEE Trans Ind Electron, 2016, 63: 1083–1095

    Article  Google Scholar 

  28. 28

    Emelyanov S V. Variable Structure Control Systems. Moscow: Nouka, 1967

    Google Scholar 

  29. 29

    Utkin V. Variable structure systems with sliding modes. IEEE Trans Autom Control, 1977, 22: 212–222

    MathSciNet  Article  MATH  Google Scholar 

  30. 30

    Burton J A, Zinober A S I. Continuous approximation of variable structure control. Int J Syst Sci, 1986, 17: 875–885

    Article  MATH  Google Scholar 

  31. 31

    DeCarlo R A, Zak S H, Matthews G P. Variable structure control of nonlinear multivariable systems: a tutorial. Proc IEEE, 1988, 76: 212–232

    Article  Google Scholar 

  32. 32

    DeCarlo R A, Zak S H, Drakunov S V. Variable Structure, Sliding-Mode Controller Design. Boca Raton: CRC Press, 2010

    Google Scholar 

  33. 33

    Liu X Y, Cao J D, Yu W W, et al. Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans Cybern, 2016, 46: 2360–2371

    Article  Google Scholar 

  34. 34

    Franceschelli M, Pisano A, Giua A, et al. Finite-time consensus with disturbance rejection by discontinuous local interactions in directed graphs. IEEE Trans Autom Control, 2015, 60: 1133–1138

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Liu X Y, Lam J, Yu W W, et al. Finite-time consensus of multiagent systems with a switching protocol. IEEE Trans Neural Netw Learn Syst, 2016, 27: 853–862

    MathSciNet  Article  Google Scholar 

  36. 36

    He X Y, Wang Q Y, Yu W W. Distributed finite-time containment control for second-order nonlinear multi-agent systems. Appl Math Comput, 2015, 268: 509–521

    MathSciNet  Google Scholar 

  37. 37

    Jiang N, Liu X Y, Yu W W, et al. Finite-time stochastic synchronization of genetic regulatory networks. Neurocomputing, 2015, 167: 314–321

    Article  Google Scholar 

  38. 38

    Liu X Y, Yu W W, Cao J D, et al. Discontinuous Lyapunov approach to state estimation and filtering of jumped systems with sampled-data. Neural Netw, 2015, 68: 12–22

    Article  Google Scholar 

  39. 39

    Liu X Y, Yu W W, Cao J D, et al. Finite-time synchronization control of complex networks via non-smooth analysis. IET Control Theory Appl, 2015, 9: 1245–1253

    MathSciNet  Article  Google Scholar 

  40. 40

    He X Y, Wang Q Y, Yu WW. Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft. Appl Math Comput, 2015, 256: 724–734

    MathSciNet  MATH  Google Scholar 

  41. 41

    He X Y, Wang Q Y, Yu W W. Finite-time containment control for second-order multiagent systems under directed topology. IEEE Trans Circ Syst II Exp Briefs, 2014, 61: 619–623

    Google Scholar 

  42. 42

    Liu X Y, Ho D W C, Yu W W, et al. A new switching design to finite-time stabilization of nonlinear systems with applications to neural networks. Neural Netw, 2014, 57: 94–102

    Article  MATH  Google Scholar 

  43. 43

    Hong H F, Yu W W, Wen G H, et al. Distributed robust fixed-time consensus in multi-agent systems with nonlinear dynamics and uncertain disturbances. In: Proceedings of IEEE International Conference on Industrial Technology (ICIT), Taipei, 2016. 1390–1395

    Google Scholar 

  44. 44

    Hong H F, Yu W W, Wen G H, et al. Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems. IEEE Trans Syst Man Cybern Syst, 2017, 47: 1464–1473

    Article  Google Scholar 

  45. 45

    Davila J, Pisano A. Fixed-time consensus for a class of nonlinear uncertain multi-agent systems. In: Proceedings of American Control Conference, Boston, 2016. 3728–3733

    Google Scholar 

  46. 46

    Young K D, Utkin V I, Ozguner U. A control engineer’s guide to sliding mode control. IEEE Trans Control Syst Technol, 1999, 7: 328–342

    Article  Google Scholar 

  47. 47

    Shtessel Y, Edwards C, Fridman L, et al. Sliding Mode Control and Observation. New York: Birkháuser, 2014

    Google Scholar 

  48. 48

    Yu S H, Long X J. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica, 2015, 54: 158–165

    MathSciNet  Article  MATH  Google Scholar 

  49. 49

    Yu W W, Wang H, Cheng F, et al. Second-order consensus in multiagent systems via distributed sliding mode control. IEEE Trans Cybern, 2017, 47: 1872–1881

    Article  Google Scholar 

  50. 50

    Guan Z H, Sun F L, Wang Y W, et al. Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans Circ Syst I Regul Pap, 2012, 59: 2646–2654

    MathSciNet  Article  Google Scholar 

  51. 51

    Wang X L, Hong Y. Finite-time consensus for multi-agent networks with second-order agent dynamics. In: Proceedings 17th World Congress International Federation of Accountants Control, Seoul, 2008. 41: 15185–15190

    Google Scholar 

  52. 52

    Zhang Y J, Yang Y, Zhao Y, et al. Distributed finite-time tracking control for nonlinear multi-agent systems subject to external disturbances. Int J Control, 2013, 86: 29–40

    MathSciNet  Article  MATH  Google Scholar 

  53. 53

    Khoo S, Xie L, Man Z. Robust finite-time consensus tracking algorithm for multirobot systems. IEEE Trans Mechatron, 2009, 14: 219–228

    Article  Google Scholar 

  54. 54

    Hu G. Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst Control Lett, 2012, 61: 134–142

    MathSciNet  Article  MATH  Google Scholar 

  55. 55

    Khoo S Y, Xie L H, Zhao S K, et al. Multi-surface sliding control for fast finite-time leader–follower consensus with high order SISO uncertain nonlinear agents. Int J Robust Nonlin Control, 2014, 24: 2388–2404

    MathSciNet  Article  MATH  Google Scholar 

  56. 56

    Das A, Lewis F L. Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. Int J Robust Nonlin Control, 2011, 21: 1509–1524

    MathSciNet  Article  MATH  Google Scholar 

  57. 57

    Zou A M, Kumar K D, Hou Z G. Distributed consensus control for multi-agent systems using terminal sliding mode and Chebyshev neural networks. Int J Robust Nonlin Control, 2013, 23: 334–357

    MathSciNet  Article  MATH  Google Scholar 

  58. 58

    Li S, Yang J, Chen W H, et al. Disturbance Observer Based Control: Methods and Applications. Boca Raton: CRC Press, 2014

    Google Scholar 

  59. 59

    Yang H Y, Zhang Z X, Zhang S. Consensus of mobile multiple agent systems with disturbance-observer-based control. Control Theory Appl, 2010, 27: 1787–1792

    Google Scholar 

  60. 60

    Yang H Y, Zou H L, Liu H X, et al. Consensus tracking of multiagent systems with time-varying reference state and exogenous disturbances. Math Probl Eng, 2014

    Google Scholar 

  61. 61

    Yang H Y, Guo L, Han C L. Robust consensus of multi-agent systems with uncertain exogenous disturbances. Commun Theor Phys, 2011, 56: 1161–1166

    Article  MATH  Google Scholar 

  62. 62

    Yang H Y, Guo L, Zou H L. Robust consensus of multi-agent systems with time-delays and exogenous disturbances. Int J Control Autom Syst, 2012, 10: 797–805

    Article  Google Scholar 

  63. 63

    Yang H Y, Zhang Z X, Zhang S Y. Consensus of second-order multi-agent systems with exogenous disturbances. Int J Robust Nonlin Control, 2011, 21: 945–956

    MathSciNet  Article  MATH  Google Scholar 

  64. 64

    Zhang X X, Liu X P. Further results on consensus of second-order multi-agent systems with exogenous disturbance. IEEE Trans Circ Syst I Regul Pap, 2013, 60: 3215–3226

    MathSciNet  Article  Google Scholar 

  65. 65

    Ding Z. Consensus disturbance rejection with disturbance observers. IEEE Trans Indust Electr, 2015, 62: 5829–5837

    Article  Google Scholar 

  66. 66

    Xiang J, Wei W, Li Y J. Synchronized output regulation of linear networked systems. IEEE Trans Autom Control, 2009, 54: 1336–1341

    MathSciNet  Article  MATH  Google Scholar 

  67. 67

    Seyboth G S, Dimarogonas D V, Johansson K H, et al. On robust synchronization of heterogeneous linear multi-agent systems with static couplings. Automatica, 2015, 53: 392–399

    MathSciNet  Article  Google Scholar 

  68. 68

    Wieland P, Sepulchre R, Allgöwer F. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 2011, 47: 1068–1074

    MathSciNet  Article  MATH  Google Scholar 

  69. 69

    Listmann K D, Wahrburg A, Strubel J, et al. Partial-state synchronization of linear heterogeneous multi-agent systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, 2011. 3440–3445

    Google Scholar 

  70. 70

    Su Y F, Huang J. Cooperative output regulation of linear multi-agent systems. IEEE Trans Autom Control, 2012, 57: 1062–1066

    MathSciNet  Article  MATH  Google Scholar 

  71. 71

    Su Y F, Huang J. Cooperative output regulation of linear multi-agent systems by output feedback. Syst Control Lett, 2012, 61: 1248–1253

    MathSciNet  Article  MATH  Google Scholar 

  72. 72

    Su Y F, Hong Y, Huang J. A general result on the robust cooperative output regulation for linear uncertain multi-agent systems. IEEE Trans Autom Control, 2013, 58: 1275–1279

    MathSciNet  Article  MATH  Google Scholar 

  73. 73

    Hong Y, Wang X, Jiang Z P. Distributed output regulation of leader–follower multi-agent systems. Int J Robust Nonlin Control, 2013, 23: 48–66

    MathSciNet  Article  MATH  Google Scholar 

  74. 74

    Su Y F, Huang J. Cooperative output regulation with application to multi-agent consensus under switching network. IEEE Trans Syst Man Cybern B, 2012, 42: 864–875

    Article  Google Scholar 

  75. 75

    Li S B, Feng G, Wang J, et al. Adaptive control for cooperative linear output regulation of heterogeneous multi-agent systems with periodic switching topology. IET Control Theory Appl, 2014, 9: 34–41

    MathSciNet  Article  Google Scholar 

  76. 76

    Cai H, Lewis F L, Hu G, et al. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75: 299–305

    MathSciNet  Article  MATH  Google Scholar 

  77. 77

    Liu L. Robust cooperative output regulation problem for non-linear multi-agent systems. IET Control Theory Appl, 2012, 6: 2142–2148

    MathSciNet  Article  Google Scholar 

  78. 78

    Wieland P, Wu J, Allgöwer F. On synchronous steady states and internal models of diffusively coupled systems. IEEE Trans Automa Control, 2013, 58: 2591–2602

    MathSciNet  Article  MATH  Google Scholar 

  79. 79

    Ding Z. Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain. Automatica, 2015, 51: 348–355

    MathSciNet  Article  MATH  Google Scholar 

  80. 80

    Dong Y, Huang J. Cooperative global robust output regulation for nonlinear multi-agent systems in output feedback form. J Dyn Syst Meas Control-Trans ASME, 2014, 136: 031001

    Article  Google Scholar 

  81. 81

    Liu W, Huang J. Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network. Automatica, 2015, 60: 1963–1968

    MathSciNet  Article  MATH  Google Scholar 

  82. 82

    Liu L. Adaptive cooperative output regulation for a class of nonlinear multi-agent systems. IEEE Trans Autom Control, 2015, 60: 1677–1682

    MathSciNet  Article  MATH  Google Scholar 

  83. 83

    Su Y F, Huang J. Cooperative global output regulation of heterogenous second-order nonlinear uncertain multi-agent systems. Automatica, 2013, 49: 3345–3350

    Article  MATH  Google Scholar 

  84. 84

    Ding Z. Consensus output regulation of a class of heterogeneous nonlinear systems. IEEE Trans Autom Control, 2013, 58: 2648–2653

    MathSciNet  Article  MATH  Google Scholar 

  85. 85

    Xu D B, Hong Y G, Wang X H. Distributed output regulation of nonlinear multi-agent systems via host internal model. IEEE Trans Autom Control, 2014, 59: 2784–2789

    MathSciNet  Article  MATH  Google Scholar 

  86. 86

    Lin P, Jia Y M, Li L. Distributed robust H consensus control in directed networks of agents with time-delay. Syst Control Lett, 2008, 57: 643–653

    MathSciNet  Article  MATH  Google Scholar 

  87. 87

    Lin P, Jia Y M. Robust H consensus analysis of a class of second-order multi-agent systems with uncertainty. IET Control Theory Appl, 2010, 4: 487–498

    MathSciNet  Article  Google Scholar 

  88. 88

    Li Z, Duan Z, Huang J. H control of networked multi-agent systems. J Syst Sci Complex, 2009, 22: 35–48

    MathSciNet  Article  MATH  Google Scholar 

  89. 89

    Liu Y, Jia Y M. H consensus control of multi-agent systems with switching topology: a dynamic output feedback protocol. Int J Control, 2010, 83: 527–537

    MathSciNet  Article  MATH  Google Scholar 

  90. 90

    Xu W, Ho D W C. Clustered event-triggered consensus analysis: an impulsive framework. IEEE Trans Ind Electron, 2016, 63: 7133–7143

    Article  Google Scholar 

  91. 91

    Han J. A class of extended state observers for uncertain systems. Control Decision, 1995, 10: 85–88

    Google Scholar 

  92. 92

    Cao W J, Zhang J H, Ren W. Leader–follower consensus of linear multi-agent systems with unknown external disturbances. Syst Control Lett, 2015, 82: 64–70

    MathSciNet  Article  MATH  Google Scholar 

  93. 93

    Davila J. Exact tracking using backstepping control design and high-order sliding modes. IEEE Trans Autom Control, 2013, 58: 2077–2081

    MathSciNet  Article  MATH  Google Scholar 

  94. 94

    Loukianov A G. Robust block decomposition sliding mode control design. Math Problems Eng, 2002, 8: 349–365

    MathSciNet  Article  MATH  Google Scholar 

  95. 95

    Li Z K, Liu X D, Ren W, et al. Distributed tracking control for linear multiagent systems with a leader of bounded unknown input. IEEE Trans Autom Control, 2013, 58: 518–523

    MathSciNet  Article  MATH  Google Scholar 

  96. 96

    Li Z K, Liu X D. Distributed tracking control for linear multiagent systems with a leader of bounded input using output information. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, 2012. 1756–1761

    Google Scholar 

  97. 97

    Lü Y Z, Li Z K, Duan Z S. Distributed adaptive consensus protocols for linear multi-agent systems with directed graphs and a leader of unknown control input. In: Proceedings of the 34th Chinese Control Conference, Hangzhou, 2015. 7339–7343

    Google Scholar 

  98. 98

    Lü Y Z, Li Z K, Duan Z S, et al. Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input. Automatica, 2016, 74: 308–314

    MathSciNet  Article  MATH  Google Scholar 

  99. 99

    Fu J J, Wang J Z. Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Syst Control Lett, 2016, 93: 1–12

    MathSciNet  Article  MATH  Google Scholar 

  100. 100

    Defoort M, Polyakov A, Demesure G, et al. Leader-follower fixed-time consensus for multi-agent systems with unknown nonlinear inherent dynamics. IET Control Theory Appl, 2015, 9: 2165–2170

    MathSciNet  Article  Google Scholar 

  101. 101

    Hong H F, Yu W W, Yu X H, et al. Fixed-time connectivity-preserving distributed average tracking for multi-agent systems. IEEE Trans Circ Syst II Exp Briefs, in press. doi: 10.1109/TCSII.2017.2661380

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61673107, 61673104), National Ten Thousand Talent Program for Young Top-notch Talents, Cheung Kong Scholars Programme of China for Young Scholars, and Fundamental Research Funds for the Central Universities of China (Grant No. 2242016K41058).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenwu Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Wang, H., Hong, H. et al. Distributed cooperative anti-disturbance control of multi-agent systems: an overview. Sci. China Inf. Sci. 60, 110202 (2017). https://doi.org/10.1007/s11432-017-9141-x

Download citation

Keywords

  • distributed cooperative control
  • anti-disturbance control
  • multi-agent system
  • variable structure control
  • sliding mode control
  • disturbance-observer-based control
  • output regulation