Observability of Boolean control networks

Abstract

We show some new results on the observability of Boolean control networks (BCNs). First, to study the observability, we combine two BCNs with the same transition matrix into a new BCN. Then, we propose the concept of a reachable set that results in a given set of initial states, and we derive four additional necessary and sufficient conditions for the observability of BCNs. In addition, we present an algorithm and construct an observability graph to determine the observability of BCNs. Finally, we illustrate the obtained results using three numerical examples.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    Article  MathSciNet  Google Scholar 

  2. 2

    Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. Berlin: Springer, 2011.

    Book  MATH  Google Scholar 

  3. 3

    Chen H W, Liang J L, Wang Z D. Pinning controllability of autonomous Boolean control networks. Sci China Inf Sci, 2016, 59: 070107.

    Article  Google Scholar 

  4. 4

    Liu Y, Chen H W, Wu B. Controllability of Boolean control networks with impulsive effects and forbidden states. Math Meth Appl Sci, 2014, 37: 1–9

    Article  MATH  Google Scholar 

  5. 5

    Lu J Q, Zhong J, Ho D W C, et al. On controllability of delayed Boolean control networks. SIAM J Control Opt, 2016, 54: 475–494

    Article  MATH  MathSciNet  Google Scholar 

  6. 6

    Lu J Q, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE Trans Autom Control, 2016, 61: 1658–1663

    Article  MATH  MathSciNet  Google Scholar 

  7. 7

    Cheng D Z, Li Z Q, Qi H S. Realization of Boolean control networks. Automatica, 2010, 46: 62–69

    Article  MATH  MathSciNet  Google Scholar 

  8. 8

    Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1390–1401

    Article  MATH  MathSciNet  Google Scholar 

  9. 9

    Laschov D, Margaliot M. A maximum principle for single-input Boolean control networks. IEEE Trans Autom Control, 2011, 56: 913–917

    Article  MATH  MathSciNet  Google Scholar 

  10. 10

    Laschov D, Margaliot M. Minimum-time control of Boolean networks. SIAM J Control Opt, 2012, 51: 2869–2892

    Article  MATH  MathSciNet  Google Scholar 

  11. 11

    Zou Y L, Zhu J D. System decomposition with respect to inputs for Boolean control networks. Automatica, 2014, 50: 1304–1309

    Article  MATH  MathSciNet  Google Scholar 

  12. 12

    Zou Y L, Zhu J D. Kalman decomposition for Boolean control networks. Automatica, 2015, 54: 65–71

    Article  MATH  MathSciNet  Google Scholar 

  13. 13

    Li F F. Pinning control design for the stabilization of Boolean networks. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1585–1590

    Article  MathSciNet  Google Scholar 

  14. 14

    Li R, Yang M, Chu T G. State feedback stabilization for Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1853–1857

    Article  MATH  MathSciNet  Google Scholar 

  15. 15

    Li R, Yang M, Chu T G. State feedback stabilization for probabilistic Boolean networks. Automatica, 2014, 50: 1272–1278

    Article  MATH  MathSciNet  Google Scholar 

  16. 16

    Liu Y, Sun L J, Lu J Q, et al. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1991–1996

    Article  MathSciNet  Google Scholar 

  17. 17

    Zhong J, Lu J Q, Liu Y, et al. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2288–2294

    Article  Google Scholar 

  18. 18

    Liu Y, Li B W, Chen H W, et al. Function perturbations on singular Boolean networks. Automatica, 2017, 84: 36–42

    Article  MathSciNet  MATH  Google Scholar 

  19. 19

    Li H T, Xie L H, Wang Y Z. On robust control invariance of Boolean control networks. Automatica, 2016, 68: 392–396

    Article  MATH  MathSciNet  Google Scholar 

  20. 20

    Fornasini E, Valcher M E. On the periodic trajectories of Boolean control networks. Automatica, 2013, 49: 1506–1509

    Article  MATH  MathSciNet  Google Scholar 

  21. 21

    Fornasini E, Valcher M E. Fault detection analysis of Boolean control networks. IEEE Trans Autom Control, 2015, 60: 2734–2739

    Article  MATH  MathSciNet  Google Scholar 

  22. 22

    Liu Y, Chen H W, Lu J Q, et al. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 2015, 52: 340–345

    Article  MATH  MathSciNet  Google Scholar 

  23. 23

    Li H T, Wang Y Z. Controllability analysis and control design for switched Boolean networks with state and input constraints. SIAM J Control Opt, 2015, 53: 2955–2979

    Article  MATH  MathSciNet  Google Scholar 

  24. 24

    Li H T, Wang Y Z, Xie L H. Output tracking control of Boolean control networks via state feedback: constant reference signal case. Automatica, 2015, 59: 54–59

    Article  MATH  MathSciNet  Google Scholar 

  25. 25

    Zhao Y, Cheng D Z. On controllability and stabilizability of probabilistic Boolean control networks. Sci China Inf Sci, 2014, 57: 012202.

    MATH  MathSciNet  Google Scholar 

  26. 26

    Cheng D Z. Semi-tensor product of matrices and its application to morgen’s problem. Sci China Ser F-Inf Sci, 2001, 44: 195–212

    MATH  MathSciNet  Google Scholar 

  27. 27

    Cheng D Z, Xu T T, Qi H S. Evolutionarily stable strategy of networked evolutionary games. IEEE Trans Neural Netw Learn Syst, 2014, 25: 1335–1345

    Article  Google Scholar 

  28. 28

    Guo P L, Wang Y Z, Li H T. Stable degree analysis for strategy profiles of evolutionary networked games. Sci China Inf Sci, 2016, 59: 052204.

    Article  Google Scholar 

  29. 29

    Lu J Q, Li H T, Liu Y, et al. A survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl, 2017, 13: 2040–2047

    Article  Google Scholar 

  30. 30

    Cheng D Z, Qi H S, Li Z Q. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667

    Article  MATH  MathSciNet  Google Scholar 

  31. 31

    Cheng D Z, Zhao Y. Identification of Boolean control networks. Automatica, 2011, 47: 702–710

    Article  MATH  MathSciNet  Google Scholar 

  32. 32

    Zhao Y, Qi H S, Cheng D Z. Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett, 2010, 59: 767–774

    Article  MATH  MathSciNet  Google Scholar 

  33. 33

    Zhang K, Zhang L. Observability of Boolean control networks: a unified approach based on finite automata. IEEE Trans Autom Control, 2016, 61: 2733–2738

    Article  MATH  MathSciNet  Google Scholar 

  34. 34

    Cheng D Z, Qi H S, Liu T, et al. A note on observability of Boolean control networks. Syst Control Lett, 2016, 87: 76–82

    Article  MATH  MathSciNet  Google Scholar 

  35. 35

    Laschov D, Margaliot M E. Controllability of Boolean control networks via perron-frobenius theory. Automatica, 2012, 48: 1218–1223

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11671361, 61573096, 61573102, 61573110), China Postdoctoral Science Foundation (Grant Nos. 2016T90406, 2015M580378), National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant No. 201610345020), and Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Liu, Y., Lu, J. et al. Observability of Boolean control networks. Sci. China Inf. Sci. 61, 092201 (2018). https://doi.org/10.1007/s11432-017-9135-4

Download citation

Keywords

  • Boolean control network
  • observability
  • semi-tensor product