Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Observability of Boolean control networks

  • 288 Accesses

  • 29 Citations

Abstract

We show some new results on the observability of Boolean control networks (BCNs). First, to study the observability, we combine two BCNs with the same transition matrix into a new BCN. Then, we propose the concept of a reachable set that results in a given set of initial states, and we derive four additional necessary and sufficient conditions for the observability of BCNs. In addition, we present an algorithm and construct an observability graph to determine the observability of BCNs. Finally, we illustrate the obtained results using three numerical examples.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

  2. 2

    Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. Berlin: Springer, 2011.

  3. 3

    Chen H W, Liang J L, Wang Z D. Pinning controllability of autonomous Boolean control networks. Sci China Inf Sci, 2016, 59: 070107.

  4. 4

    Liu Y, Chen H W, Wu B. Controllability of Boolean control networks with impulsive effects and forbidden states. Math Meth Appl Sci, 2014, 37: 1–9

  5. 5

    Lu J Q, Zhong J, Ho D W C, et al. On controllability of delayed Boolean control networks. SIAM J Control Opt, 2016, 54: 475–494

  6. 6

    Lu J Q, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE Trans Autom Control, 2016, 61: 1658–1663

  7. 7

    Cheng D Z, Li Z Q, Qi H S. Realization of Boolean control networks. Automatica, 2010, 46: 62–69

  8. 8

    Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1390–1401

  9. 9

    Laschov D, Margaliot M. A maximum principle for single-input Boolean control networks. IEEE Trans Autom Control, 2011, 56: 913–917

  10. 10

    Laschov D, Margaliot M. Minimum-time control of Boolean networks. SIAM J Control Opt, 2012, 51: 2869–2892

  11. 11

    Zou Y L, Zhu J D. System decomposition with respect to inputs for Boolean control networks. Automatica, 2014, 50: 1304–1309

  12. 12

    Zou Y L, Zhu J D. Kalman decomposition for Boolean control networks. Automatica, 2015, 54: 65–71

  13. 13

    Li F F. Pinning control design for the stabilization of Boolean networks. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1585–1590

  14. 14

    Li R, Yang M, Chu T G. State feedback stabilization for Boolean control networks. IEEE Trans Autom Control, 2013, 58: 1853–1857

  15. 15

    Li R, Yang M, Chu T G. State feedback stabilization for probabilistic Boolean networks. Automatica, 2014, 50: 1272–1278

  16. 16

    Liu Y, Sun L J, Lu J Q, et al. Feedback controller design for the synchronization of Boolean control networks. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1991–1996

  17. 17

    Zhong J, Lu J Q, Liu Y, et al. Synchronization in an array of output-coupled Boolean networks with time delay. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2288–2294

  18. 18

    Liu Y, Li B W, Chen H W, et al. Function perturbations on singular Boolean networks. Automatica, 2017, 84: 36–42

  19. 19

    Li H T, Xie L H, Wang Y Z. On robust control invariance of Boolean control networks. Automatica, 2016, 68: 392–396

  20. 20

    Fornasini E, Valcher M E. On the periodic trajectories of Boolean control networks. Automatica, 2013, 49: 1506–1509

  21. 21

    Fornasini E, Valcher M E. Fault detection analysis of Boolean control networks. IEEE Trans Autom Control, 2015, 60: 2734–2739

  22. 22

    Liu Y, Chen H W, Lu J Q, et al. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 2015, 52: 340–345

  23. 23

    Li H T, Wang Y Z. Controllability analysis and control design for switched Boolean networks with state and input constraints. SIAM J Control Opt, 2015, 53: 2955–2979

  24. 24

    Li H T, Wang Y Z, Xie L H. Output tracking control of Boolean control networks via state feedback: constant reference signal case. Automatica, 2015, 59: 54–59

  25. 25

    Zhao Y, Cheng D Z. On controllability and stabilizability of probabilistic Boolean control networks. Sci China Inf Sci, 2014, 57: 012202.

  26. 26

    Cheng D Z. Semi-tensor product of matrices and its application to morgen’s problem. Sci China Ser F-Inf Sci, 2001, 44: 195–212

  27. 27

    Cheng D Z, Xu T T, Qi H S. Evolutionarily stable strategy of networked evolutionary games. IEEE Trans Neural Netw Learn Syst, 2014, 25: 1335–1345

  28. 28

    Guo P L, Wang Y Z, Li H T. Stable degree analysis for strategy profiles of evolutionary networked games. Sci China Inf Sci, 2016, 59: 052204.

  29. 29

    Lu J Q, Li H T, Liu Y, et al. A survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl, 2017, 13: 2040–2047

  30. 30

    Cheng D Z, Qi H S, Li Z Q. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667

  31. 31

    Cheng D Z, Zhao Y. Identification of Boolean control networks. Automatica, 2011, 47: 702–710

  32. 32

    Zhao Y, Qi H S, Cheng D Z. Input-state incidence matrix of Boolean control networks and its applications. Syst Control Lett, 2010, 59: 767–774

  33. 33

    Zhang K, Zhang L. Observability of Boolean control networks: a unified approach based on finite automata. IEEE Trans Autom Control, 2016, 61: 2733–2738

  34. 34

    Cheng D Z, Qi H S, Liu T, et al. A note on observability of Boolean control networks. Syst Control Lett, 2016, 87: 76–82

  35. 35

    Laschov D, Margaliot M E. Controllability of Boolean control networks via perron-frobenius theory. Automatica, 2012, 48: 1218–1223

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11671361, 61573096, 61573102, 61573110), China Postdoctoral Science Foundation (Grant Nos. 2016T90406, 2015M580378), National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant No. 201610345020), and Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170019).

Author information

Correspondence to Yang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Liu, Y., Lu, J. et al. Observability of Boolean control networks. Sci. China Inf. Sci. 61, 092201 (2018). https://doi.org/10.1007/s11432-017-9135-4

Download citation

Keywords

  • Boolean control network
  • observability
  • semi-tensor product