Construction of rotation symmetric bent functions with maximum algebraic degree

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kavut S, Maitra S, Yücel M D. Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans Inf Theory, 2007, 53: 1743–1751

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Rijmen V, Barreto P S L M, Filho D L G. Rotation symmetry in algebraically generated cryptographic substitution tables. Inf Process Lett, 2008, 106: 246–250

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Rothaus O S. On bent functions. J Comb Theory, 1976, 20: 300–305

    Article  MATH  Google Scholar 

  4. 4

    Su S H, Tang X H. On the systematic constructions of rotation symmetric bent functions with any possible algebraic degrees. Cryptology ePrint Archive, Report 2015/451, 2015. https://eprint.iacr.org/2015/451

    Google Scholar 

  5. 5

    Su S H, Tang X H. Systematic constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions. IEEE Trans Inf Theory, 2017, 63: 4658–4667

    Article  Google Scholar 

  6. 6

    Carlet C, Gao G P, Liu W F. Results on constructions of rotation symmetric bent and semi-bent functions. In: Sequences and Their Applications-SETA 2014. Berlin: Springer, 2014. 21–33

    Google Scholar 

  7. 7

    Gao G P, Zhang X Y, Liu W F, et al. Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans Inf Theory, 2012, 58: 4908–4913

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Carlet C, Gao G P, LiuWF. A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J Comb Theory, 2014, 127: 161–175

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Cusick T W, Stănică P. Cryptographic Boolean Functions and Applications. Oxford: Elsevier, 2017. 124–125

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61272434, 61672330, 61602887).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenying Zhang.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Han, G. Construction of rotation symmetric bent functions with maximum algebraic degree. Sci. China Inf. Sci. 61, 038101 (2018). https://doi.org/10.1007/s11432-017-9123-2

Download citation