Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Construction of rotation symmetric bent functions with maximum algebraic degree

This is a preview of subscription content, log in to check access.

References

  1. 1

    Kavut S, Maitra S, Yücel M D. Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans Inf Theory, 2007, 53: 1743–1751

  2. 2

    Rijmen V, Barreto P S L M, Filho D L G. Rotation symmetry in algebraically generated cryptographic substitution tables. Inf Process Lett, 2008, 106: 246–250

  3. 3

    Rothaus O S. On bent functions. J Comb Theory, 1976, 20: 300–305

  4. 4

    Su S H, Tang X H. On the systematic constructions of rotation symmetric bent functions with any possible algebraic degrees. Cryptology ePrint Archive, Report 2015/451, 2015. https://eprint.iacr.org/2015/451

  5. 5

    Su S H, Tang X H. Systematic constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions. IEEE Trans Inf Theory, 2017, 63: 4658–4667

  6. 6

    Carlet C, Gao G P, Liu W F. Results on constructions of rotation symmetric bent and semi-bent functions. In: Sequences and Their Applications-SETA 2014. Berlin: Springer, 2014. 21–33

  7. 7

    Gao G P, Zhang X Y, Liu W F, et al. Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans Inf Theory, 2012, 58: 4908–4913

  8. 8

    Carlet C, Gao G P, LiuWF. A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J Comb Theory, 2014, 127: 161–175

  9. 9

    Cusick T W, Stănică P. Cryptographic Boolean Functions and Applications. Oxford: Elsevier, 2017. 124–125

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61272434, 61672330, 61602887).

Author information

Correspondence to Wenying Zhang.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Han, G. Construction of rotation symmetric bent functions with maximum algebraic degree. Sci. China Inf. Sci. 61, 038101 (2018). https://doi.org/10.1007/s11432-017-9123-2

Download citation