Construction of rotation symmetric bent functions with maximum algebraic degree




This work was supported by National Natural Science Foundation of China (Grant Nos. 61272434, 61672330, 61602887).


  1. 1.
    Kavut S, Maitra S, Yücel M D. Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans Inf Theory, 2007, 53: 1743–1751MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Rijmen V, Barreto P S L M, Filho D L G. Rotation symmetry in algebraically generated cryptographic substitution tables. Inf Process Lett, 2008, 106: 246–250MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Rothaus O S. On bent functions. J Comb Theory, 1976, 20: 300–305CrossRefMATHGoogle Scholar
  4. 4.
    Su S H, Tang X H. On the systematic constructions of rotation symmetric bent functions with any possible algebraic degrees. Cryptology ePrint Archive, Report 2015/451, 2015. Scholar
  5. 5.
    Su S H, Tang X H. Systematic constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions. IEEE Trans Inf Theory, 2017, 63: 4658–4667CrossRefGoogle Scholar
  6. 6.
    Carlet C, Gao G P, Liu W F. Results on constructions of rotation symmetric bent and semi-bent functions. In: Sequences and Their Applications-SETA 2014. Berlin: Springer, 2014. 21–33Google Scholar
  7. 7.
    Gao G P, Zhang X Y, Liu W F, et al. Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans Inf Theory, 2012, 58: 4908–4913MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Carlet C, Gao G P, LiuWF. A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J Comb Theory, 2014, 127: 161–175MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cusick T W, Stănică P. Cryptographic Boolean Functions and Applications. Oxford: Elsevier, 2017. 124–125Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Information Science and EngineeringShandong Normal UniversityJinanChina
  2. 2.School of Management EngineeringShandong Jianzhu UniversityJinanChina

Personalised recommendations