Physical layer security in multi-antenna cognitive heterogeneous cellular networks: a unified secrecy performance analysis

  • Xiaohui Qi
  • Kaizhi Huang
  • Bin Li
  • Liang Jin
  • Xinsheng Ji
Research Paper


Cognitive heterogeneous cellular networks (CHCNs) are emerging as a promising approach to next-generation wireless communications owing to their seamless coverage and high network throughput. In this paper, we describe our reliance on multi-antenna technology and a secrecy transmission protocol to ensure the reliability and security of downlink underlay CHCNs. First, we introduce a two-tier CHCN model using a stochastic geometry framework, and derive the probability distribution of the indicator function for a secrecy transmission scheme. We then investigate the connection outage probability, secrecy outage probability (SOP), and transmission SOP of both primary and cognitive users under a secrecy guard scheme and a threshold-based scheme. Furthermore, we reveal some insights into the secrecy performance by properly setting the predetermined access threshold and the radius of detection region for the secrecy transmission scheme. Finally, simulation results are provided to show the influence of the antenna system, eavesdropper density, predetermined access threshold, and radius of the detection region on the reliability and security performance of a CHCN.


cognitive heterogeneous cellular network physical layer security secrecy guard scheme threshold-based scheme multi-antenna technique 



This work was supported by National Natural Science Foundation of China (Grant Nos. 61401510, 61379006, 61601514, 61521003), National High Technology Research and Development Program of China (863) (Grant No. 2015AA01A708).


  1. 1.
    Li B, Fei Z S, Chen H. Robust artificial noise-aided secure beamforming in wireless-powered non-regenerative relay. IEEE Access, 2016, 4: 7921–7929CrossRefGoogle Scholar
  2. 2.
    Yang N, Wang L, Geraci G, et al. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun Mag, 2015, 53: 20–27CrossRefGoogle Scholar
  3. 3.
    Li B, Fei Z S. Probabilistic-constrained robust secure transmission for energy harvesting over MISO channels. Sci China Inf Sci, 2018, 61: 022303CrossRefGoogle Scholar
  4. 4.
    Andrews J, Claussen H, Dohler M, et al. Femtocells: past, present, and future. IEEE J Sel Areas Commun, 2012, 30: 497–508CrossRefGoogle Scholar
  5. 5.
    Li B, Fei Z S, Chu Z, et al. Secure transmission for heterogeneous cellular networks with wireless information and power transfer. IEEE Syst J, 2017. doi: 10.1109/JSYST.2017.2713881Google Scholar
  6. 6.
    Zou Y, Yao Y D, Zheng B. Cooperative relay techniques for cognitive radio systems: spectrum sensing and secondary user transmissions. IEEE Commun Mag, 2012, 50: 98–503CrossRefGoogle Scholar
  7. 7.
    Xu X, He B, Yang W, et al. Secure transmission design for cognitive radio networks with poisson distributed eavesdroppers. IEEE Trans Inf Forensic Secur, 2015, 11: 373–387CrossRefGoogle Scholar
  8. 8.
    Zou Y, Zhu J, Yang L, et al. Securing physical-layer communications for cognitive radio networks. IEEE Commun Mag, 2015, 53: 48–54CrossRefGoogle Scholar
  9. 9.
    Li B, Fei Z S. Robust beamforming and cooperative jamming for secure transmission in DF relay systems. EURASIP J Wirel Commun Netw, 2016, 68: 1–11CrossRefGoogle Scholar
  10. 10.
    Li X Y, Jin L, Huang K Z, et al. Transmission frequency-band hidden technology in physical layer security. Sci China Inf Sci, 2016, 59: 019301Google Scholar
  11. 11.
    Gong S Q, Xing C W, Fei Z S, et al. Cooperative beamforming design for physical-layer security of multi-hop MIMO communications. Sci China Inf Sci, 2016, 59: 062304CrossRefGoogle Scholar
  12. 12.
    Zhong B, Wu M G, Li T, et al. Physical layer security via maximal ratio combining and relay selection over Rayleigh fading channels. Sci China Inf Sci, 2016, 59: 062305CrossRefGoogle Scholar
  13. 13.
    Zou Y, Champagne B, Zhu W P, et al. Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans Commun, 2015, 63: 215–228Google Scholar
  14. 14.
    Mokari N, Parsaeefard S, Saeedi H, et al. Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Trans Signal Proc, 2015, 63: 291–304MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang C, Wang H M. On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Trans Inf Forensic Secur, 2014, 9: 1814–1827CrossRefGoogle Scholar
  16. 16.
    Zou Y, Wang X, Shen W. Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Trans Commun, 2013, 61: 5103–5113CrossRefGoogle Scholar
  17. 17.
    Zheng T X, Wang H M, Yuan J, et al. Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Trans Commun, 2015, 63: 4347–4362CrossRefGoogle Scholar
  18. 18.
    Wang C, Wang H M, Xia X G, et al. Uncoordinated jammer selection for securing SIMOME wiretap channels: a stochastic geometry approach. IEEE Trans Wirel Commun, 2015, 14: 2596–2612CrossRefGoogle Scholar
  19. 19.
    Wang H M, Wang C, Zheng T X, et al. Impact of artificial noise on cellular networks: a stochastic geometry approach. IEEE Trans Wirel Commun, 2016, 15: 7390–7404CrossRefGoogle Scholar
  20. 20.
    Wang H M, Zheng T X, Yuan J, et al. Physical layer security in heterogeneous cellular networks. IEEE Trans Commun, 2016, 64: 1204–1219CrossRefGoogle Scholar
  21. 21.
    Shu Z H, Yang Y Q, Qian Y, et al. Impact of interference on secrecy capacity in a cognitive radio network. In: Proceedings of IEEE Global Telecommunications Conference, Kathmandu, 2011Google Scholar
  22. 22.
    Deng Y, Wang L, Zaidi S A R, et al. Artificial-noise aided secure transmission in large scale spectrum sharing networks. IEEE Trans Commun, 2016, 64: 2116–2129CrossRefGoogle Scholar
  23. 23.
    Xu X, Yang W, Cai Y, et al. On the secure spectral-energy efficiency tradeoff in random cognitive radio networks. IEEE J Sel Areas Commun, 2016, 34: 2706–2722CrossRefGoogle Scholar
  24. 24.
    Panahi F H, Ohtsuki T. Stochastic geometry based analytical modeling of cognitive heterogeneous cellular networks. In: Proceedings of IEEE International Conference on Communications, Sydney, 2014. 5281–5286Google Scholar
  25. 25.
    Blaszczyszyn B, Karray M K, Keeler H P. Using poisson processes to model lattice cellular networks. In: Proceedings of IEEE INFOCOM, Turin, 2013. 773–781Google Scholar
  26. 26.
    Taylor D B, Dhillon H S, Novlan T D, et al. Pairwise interaction processes for modeling cellular network topology. In: Proceedings of IEEE Global Communications Conference, Anaheim, 2012. 4524–4529Google Scholar
  27. 27.
    Dhillon H S, Ganti R K, Baccelli F, et al. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2012, 30: 550–560CrossRefGoogle Scholar
  28. 28.
    Deng Y S, Wang L F, Wong K K, et al. Safeguarding massive MIMO aided hetnets using physical layer security. In: Proceedings of IEEE International Conference on Wireless Communications & Signal Processing, Nanjing, 2015. 1–5Google Scholar
  29. 29.
    Wang H, Zhou X, Reed M C. Physical layer security in cellular networks: a stochastic geometry approach. IEEE Trans Wirel Commun, 2013, 12: 2776–2787CrossRefGoogle Scholar
  30. 30.
    Wu H, Tao X, Li N, et al. Secrecy outage probability in multi-RAT heterogeneous networks. IEEE Commun Lett, 2016, 20: 53–56CrossRefGoogle Scholar
  31. 31.
    Gupta A K, Dhillon H S, Vishwanath S, et al. Downlink coverage probability in MIMO HetNets with flexible cell selection. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 1534–1539Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Xiaohui Qi
    • 1
  • Kaizhi Huang
    • 1
  • Bin Li
    • 2
  • Liang Jin
    • 1
  • Xinsheng Ji
    • 1
  1. 1.National Digital Switching System Engineering & Technological Research CenterZhengzhouChina
  2. 2.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations