Stochastic evolution equations of jump type with random coefficients: existence, uniqueness and optimal control

This is a preview of subscription content, access via your institution.

References

  1. 1

    Albeverio S, Wu J L, Zhang T S. Parabolic SPDEs driven by Poisson white noise. Stoch Process Appl, 1998, 74: 21–36

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Ren Y, Dai H, Sakthivel R. Approximate controllability of stochastic differential systems driven by a Lévy process. Int J Control, 2013, 86: 1158–1164

    Article  MATH  Google Scholar 

  3. 3

    Röckner M, Zhang T S. Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles. Potential Anal, 2007, 26: 255–279

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Sakthivel R, Ren Y. Exponential stability of secondorder stochastic evolution equations with Poisson jumps. Commun Nonlinear Sci Numer Simul, 2012, 17: 4517–4523

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Yang X, Zhai J, Zhang T S. Large deviations for SPDEs of jump type. Stoch Dynam, 2015, 15: 1550026

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Zhao H, Xu S. Freidlin-Wentzells large deviations for stochastic evolution equations with Poisson jumps. Adv Pure Math, 2016, 6: 676

    Article  Google Scholar 

  7. 7

    Zhai J, Zhang T. Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises. Bernoulli, 2015, 21: 2351–2392

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Øksendal B, Proske F, Zhang T S. Backward stochastic partial differential equations with jumps and application to optimal control of random jump fields. Stochastics, 2005, 77: 381–399

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 11471079, 11301177) and Natural Science Foundation of Zhejiang Province for Distinguished Young Scholar (Grant No. LR15A010001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qingxin Meng.

Additional information

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Meng, Q. Stochastic evolution equations of jump type with random coefficients: existence, uniqueness and optimal control. Sci. China Inf. Sci. 60, 118202 (2017). https://doi.org/10.1007/s11432-016-9107-1

Download citation