Guaranteed cost boundary control for cluster synchronization of complex spatio-temporal dynamical networks with community structure

Abstract

This paper discusses the problem for cluster synchronization control of a nonlinear complex spatio-temporal dynamical network (CSDN) with community structure. Initially, a collocated boundary controller with boundary measurement is studied to achieve the cluster synchronization of the CSDN. After that, a guaranteed cost boundary controller is further developed based on the obtained results. Furthermore, the suboptimal control design is addressed by minimizing an upper bound of the cost function. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Garone E, Gasparri A, Lamonaca F. Clock synchronization for wireless sensor network with communication delay. Automatica, 2015, 59: 60–72

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Li H Q, Liao X F, Huang T W, et al. Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Trans Autom Control, 2015, 60: 1998–2003

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Cao J D, Rakkiyappan R, Maheswari K, et al. Exponential H filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci China Technol Sci, 2016, 59: 387–402

    Article  Google Scholar 

  4. 4

    Huang TW, Li C D, Duan S K, et al. Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst, 2012, 23: 866–875

    Article  Google Scholar 

  5. 5

    Li H Q, Huang C C, Chen G, et al. Distributed consensus optimization in multiagent networks with time-varying directed topologies and quantized communication. IEEE Trans Cybern, 2017, 47: 2044–2057

    Article  Google Scholar 

  6. 6

    Li H Q, Chen G, Huang T W, et al. Event-triggered distributed average consensus over directed digital networks with limited communication bandwidth. IEEE Trans Cybern, 2016, 46: 3098–3110

    Article  Google Scholar 

  7. 7

    Li H Q, Chen G, Huang T W, et al. High-performance consensus control in networked systems with limited bandwidth communication and time-varying directed topologies. IEEE Trans Neural Netw Learn Syst, 2017, 28: 1043–1054

    Article  Google Scholar 

  8. 8

    Wu X J, Zhu C J, Kan H B. An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system. Appl Math Comput, 2015, 252: 201–214

    MathSciNet  MATH  Google Scholar 

  9. 9

    Fan D G, Wang Q Y. Synchronization and bursting transition of the coupled hindmarsh-rose systems with asymmetrical time-delays. Sci China Technol Sci, 2017, 60: 1019–1031

    Article  Google Scholar 

  10. 10

    Li X D, Rakkiyappan R, Sakthivel N. Non-fragile synchronization control for markovian jumping complex dynamical networks with probabilistic time-varying coupling delays. Asian J Control, 2015, 17: 1678–1695

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Yao C G, Zhao Q, Yu J. Complete synchronization induced by disorder in coupled chaotic lattices. Phys Lett A, 2013, 377: 370–377

    Article  Google Scholar 

  12. 12

    Mahmoud G, Mahmoud E. Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dyn, 2013, 73: 2231–2240

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Rajagopal K, Vaidyanathan S. Adaptive lag synchronization of a modified rucklidge chaotic system with unknown parameters and its labview implementation. Sensor Transducers, 2016, 200: 37–44

    Google Scholar 

  14. 14

    Ferrari F A, Viana R L, Lopes S R, et al. Phase synchronization of coupled bursting neurons and the generalized kuramoto model. Neural Netw, 2015, 66: 107–118

    Article  Google Scholar 

  15. 15

    Li T, Rao B P. Criteria of kalman’s type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with dirichlet boundary controls. SIAM J Control Opt, 2016, 54: 49–72

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Yu W W, Chen G R, Lü J H. On pinning synchronization of complex dynamical networks. Automatica, 2009, 45: 429–435

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Cao J D, Li R X. Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci China Inf Sci, 2017, 60: 032201

    Article  Google Scholar 

  18. 18

    Nagornov R, Osipov G, Komarov M, et al. Mixed-mode synchronization between two inhibitory neurons with postinhibitory rebound. Commun Nonlinear Sci Numer Simul, 2016, 36: 175–191

    MathSciNet  Article  Google Scholar 

  19. 19

    Sorrentino F, Pecora L M, Hagerstrom A M, et al. Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci Adv, 2016, 2: e1501737

    Google Scholar 

  20. 20

    Wang Y L, Cao J D. Cluster synchronization in nonlinearly coupled delayed networks of non-identical dynamic systems. Nonlinear Anal Real World Appl, 2013, 14: 842–851

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Kang Y, Qin J H, Ma Q C, et al. Cluster synchronization for interacting clusters of nonidentical nodes via intermittent pinning control. IEEE Trans Neural Netw Learn Syst, 2017. doi: 10.1109/TNNLS.2017.2669078

    Google Scholar 

  22. 22

    Cao J D, Li L L. Cluster synchronization in an array of hybrid coupled neural networks with delay. Neural Netw, 2009, 22: 335–342

    Article  MATH  Google Scholar 

  23. 23

    Kaneko K. Relevance of dynamic clustering to biological networks. Phys D Nonlinear Phenom, 1994, 75: 55–73

    Article  MATH  Google Scholar 

  24. 24

    Wang K H, Fu X C, Li K Z. Cluster synchronization in community networks with nonidentical nodes. Chaos Interdiscipl J Nonlinear Sci, 2009, 19: 023106

    MathSciNet  Article  MATH  Google Scholar 

  25. 25

    Lu W L, Liu B, Chen T P. Cluster synchronization in networks of coupled nonidentical dynamical systems. Chaos Interdiscipl J Nonlinear Sci, 2010, 20: 013120

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Wu Z Y, Fu X C. Cluster mixed synchronization via pinning control and adaptive coupling strength in community networks with nonidentical nodes. Commun Nonlinear Sci Numer Simul, 2012, 17: 1628–1636

    MathSciNet  Article  MATH  Google Scholar 

  27. 27

    Wang J W, Wu H N, Li H X. Guaranteed cost distributed fuzzy observer-based control for a class of nonlinear spatially distributed processes. AIChE J, 2013, 59: 2366–2378

    Article  Google Scholar 

  28. 28

    Sheng L, Yang H Z, Lou X Y. Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms. Chaos Soliton Fract, 2009, 40: 930–939

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Yu F, Jiang H J. Global exponential synchronization of fuzzy cellular neural networks with delays and reaction–diffusion terms. Neurocomputing, 2011, 74: 509–515

    Article  Google Scholar 

  30. 30

    Yang C D, Qiu J L, He H B. Exponential synchronization for a class of complex spatio-temporal networks with space-varying coefficients. Neurocomputing, 2015, 151: 40–47

    Google Scholar 

  31. 31

    Hu C, Jiang H J, Teng Z D. Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms. IEEE Trans Neural Netw, 2010, 21: 67–81

    Article  Google Scholar 

  32. 32

    Hu C, Yu J, Jiang H J, et al. Exponential synchronization for reaction-diffusion networks with mixed delays in terms of p-norm via intermittent driving. Neural Netw, 2012, 31: 1–11

    Article  MATH  Google Scholar 

  33. 33

    Gan Q T. Adaptive synchronization of stochastic neural networks with mixed time delays and reaction-diffusion terms. Nonlinear Dyn, 2012, 69: 2207–2219

    MathSciNet  Article  MATH  Google Scholar 

  34. 34

    Wang J L, Wu H N. Synchronization and adaptive control of an array of linearly coupled reaction-diffusion neural networks with hybrid coupling. IEEE Trans Cyber, 2014, 44: 1350–1361

    Article  Google Scholar 

  35. 35

    Wang J L, Wu H N, Guo L. Novel adaptive strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms. IEEE Trans Neural Netw Learn Syst, 2014, 25: 429–440

    Article  Google Scholar 

  36. 36

    Shafi Y, Arcak M. An adaptive algorithm for synchronization in diffusively-coupled systems. In: Proceedings of American Control Conference, Portland, 2014. 2220–2225

    Google Scholar 

  37. 37

    Wu K N, Tian T, Wang L M. Synchronization for a class of coupled linear partial differential systems via boundary control. J Franklin Inst, 2016, 353: 4062–4073

    MathSciNet  Article  MATH  Google Scholar 

  38. 38

    Wu K N, Tian T, Wang L M, et al. Asymptotical synchronization for a class of coupled time-delay partial differential systems via boundary control. Neurocomputing, 2016, 197: 113–118

    Article  Google Scholar 

  39. 39

    Wu Z G, Dong S L, Shi P, et al. Fuzzy-model-based nonfragile guaranteed cost control of nonlinear markov jump systems. IEEE Trans Syst Man Cybern Syst, 2017, 47: 2388–2397

    Article  Google Scholar 

  40. 40

    Lu R Q, Cheng H L, Bai J J. Fuzzy-model-based quantized guaranteed cost control of nonlinear networked systems. IEEE Trans Fuzzy Syst, 2015, 23: 567–575

    Article  Google Scholar 

  41. 41

    Wang J W, Li H X, Wu H N. Fuzzy guaranteed cost sampled-data control of nonlinear systems coupled with a scalar reaction-diffusion process. Fuzzy Set Syst, 2016, 302: 121–142

    MathSciNet  Article  Google Scholar 

  42. 42

    Wang Z P, Wu H N. Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems. Inf Sci, 2016, 327: 21–39

    MathSciNet  Article  Google Scholar 

  43. 43

    Lee T H, Ji D H, Park J H, et al. Decentralized guaranteed cost dynamic control for synchronization of a complex dynamical network with randomly switching topology. Appl Math Comput, 2012, 219: 996–1010

    MathSciNet  MATH  Google Scholar 

  44. 44

    Feng J W, Yang P, Zhao Y. Cluster synchronization for nonlinearly time-varying delayed coupling complex networks with stochastic perturbation via periodically intermittent pinning control. Appl Math Comput, 2016, 291: 52–68

    MathSciNet  Google Scholar 

  45. 45

    Seuret A, Gouaisbaut F. Wirtinger-based integral inequality: application to time-delay systems. Automatica, 2013, 49: 2860–2866

    MathSciNet  Article  MATH  Google Scholar 

  46. 46

    Yang C D, Zhang A C, Chen X, et al. Stability and stabilization of a delayed PIDE system via SPID control. Neural Comput Appl, 2016. doi: 10.1007/s00521-016-2297-5

    Google Scholar 

  47. 47

    Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin: Springer, 1983

    Google Scholar 

  48. 48

    Zhou J, Lu J N, Lü J H. Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans Autom Control, 2006, 51: 652–656

    MathSciNet  Article  MATH  Google Scholar 

  49. 49

    Chen Z, Fu X L, Zhao D H. Anti-periodic mild attractor of delayed hopfield neural networks systems with reactiondiffusion terms. Neurocomputing, 2013, 99: 372–380

    Article  Google Scholar 

  50. 50

    Lu J Q, Ho D W, Cao J D, et al. Single impulsive controller for globally exponential synchronization of dynamical networks. Nonlinear Anal Real World Appl, 2013, 14: 581–593

    MathSciNet  Article  MATH  Google Scholar 

  51. 51

    Wu H N, Wang J W, Li H X. Fuzzy boundary control design for a class of nonlinear parabolic distributed parameter systems. IEEE Trans Fuzzy Syst, 2014, 22: 642–652

    Article  Google Scholar 

  52. 52

    Wang J W, Wu H N, Sun C Y. Boundary controller design and well-posedness analysis of semi-linear parabolic PDE systems. In: Proceedings of 2014 American Control Conference, Beijing, 2014. 3369–3374

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61573096, 61272530, 61703193), Natural Science Foundation of Jiangsu Province of China (Grant No. BK2012741), Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2017MF022, ZR2015FL0 21), Youth Project of National Education Science Fund in the 13th Five-year Plan (Grant No. EIA160450), “333 Engineering” Foundation of Jiangsu Province of China (Grant No. BRA2015286) and National Priority Research Project NPRP funded by Qatar National Research Fund (Grant No. 9 166-1-031).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jinde Cao or Jianlong Qiu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Cao, J., Huang, T. et al. Guaranteed cost boundary control for cluster synchronization of complex spatio-temporal dynamical networks with community structure. Sci. China Inf. Sci. 61, 052203 (2018). https://doi.org/10.1007/s11432-016-9099-x

Download citation

Keywords

  • cluster synchronization
  • complex dynamical networks
  • boundary control
  • guaranteed control
  • LMIs