Simultaneous attack of a stationary target using multiple missiles: a consensus-based approach

Abstract

This paper considers the simultaneous attack problem of multiple missiles against a stationary target. Built upon the classic proportional navigation structure, we propose a consensus-based approach to design the cooperative guidance law. Specifically, we present time-varying navigation ratios for the missiles, which exchange the time-to-go estimates between neighboring missiles via a communication network. For the cases where the communication topology is undirected or in the leader–follower structure with a missile acting as the leader whose navigation ratio cannot be tuned, we show that the proposed cooperative guidance law can solve the simultaneous attack problem. The effectiveness of the theoretical results is finally illustrated by numerical simulations.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Jeon I S, Lee J I, Tahk M J. Homing guidance law for cooperative attack of multiple missiles. J Guidance Control Dyn, 2010, 33: 275–280

    Article  Google Scholar 

  2. 2

    Jeon I S, Lee J I, Tahk M J. Impact-time-control guidance law for anti-ship missiles. IEEE Trans Contr Syst Tech, 2006, 14: 260–266

    Article  Google Scholar 

  3. 3

    Lee J I, Jeon I S, Tahk M J. Guidance law to control impact time and angle. IEEE Trans Aerosp Electron Syst, 2007, 43: 301–310

    Article  Google Scholar 

  4. 4

    Kim T H, Lee C H, Jeon I S, et al. Augmented polynomial guidance with impact time and angle constraints. IEEE Trans Aerosp Electron Syst, 2013, 49: 2806–2817

    Article  Google Scholar 

  5. 5

    Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode control. IEEE Trans Contr Syst Tech, 2012, 20: 1436–1449

    Article  Google Scholar 

  6. 6

    Snyder M G, Li C, Qu Z. A new parameterized guidance law for cooperative air defense. In: Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, 2012

    Google Scholar 

  7. 7

    Zhang P, Liu H H T, Li X, et al. Fault tolerance of cooperative interception using multiple flight vehicles. J Franklin Institute, 2013, 350: 2373–2395

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Wei X, Wang Y, Dong S, et al. A three-dimensional cooperative guidance law of multimissile system. Int J Aerospace Eng, 2015, 1: 1–8

    Google Scholar 

  9. 9

    Ou L, Wang Y, Liu L, et al. Cooperative control of multi-missile systems. IET Control Theory A, 2015, 9: 441–446

    MathSciNet  Article  Google Scholar 

  10. 10

    Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat Contr, 2004, 49: 1520–1533

    MathSciNet  Article  Google Scholar 

  11. 11

    Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 2007, 95: 215–233

    Article  Google Scholar 

  12. 12

    Li Z, Ren W, Liu X, et al. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int J Robust Nonlinear Control, 2013, 23: 534–547

    MathSciNet  Article  MATH  Google Scholar 

  13. 13

    Zhao Y, Duan Z, Wen G. Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements. Int J Robust Nonlinear Control, 2015, 25: 1688–1703

    MathSciNet  Article  MATH  Google Scholar 

  14. 14

    Zhao Y, Duan Z, Wen G, et al. Distributed finite-time tracking control for multi-agent systems: an observer-based approach. Syst Control Lett, 2013, 62: 22–28

    MathSciNet  Article  MATH  Google Scholar 

  15. 15

    Li Z, Ren W, Liu X, et al. Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica, 2013, 49: 1986–1995

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Wen G, Duan Z, Yu W, et al. Consensus in multi-agent systems with communication constraints. Int J Robust Nonlinear Control, 2012, 22: 170–182

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Wen G, Duan Z, Yu W, et al. Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach. Int J Robust Nonlinear Control, 2013, 23: 602–619

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Yu W, Ren W, Zheng W X, et al. Distributed control gains design for consensus in multi-agent systems with secondorder nonlinear dynamics. Automatica, 2013, 49: 2107–2115

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Zhang Y, Yang Y, Zhao Y. Finite-time consensus tracking for harmonic oscillators using both state feedback control and output feedback control. Int J Robust Nonlinear Control, 2013, 23: 878–893

    MathSciNet  Article  MATH  Google Scholar 

  20. 20

    Hu G. Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst Control Lett, 2012, 61: 134–142

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Syst Mag, 2007, 27: 71–82

    Article  Google Scholar 

  22. 22

    Wang Q, Perc M, Duan Z, et al. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19: 023112

    Article  Google Scholar 

  23. 23

    Wang Q, Duan Z, Perc M, et al. Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. Europhys Lett, 2008, 83: 50008

    Article  Google Scholar 

  24. 24

    Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat Contr, 2004, 49: 1520–1533

    MathSciNet  Article  Google Scholar 

  25. 25

    Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41: 1957–1964

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11332001, 61473005, 91216304).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianying Yang.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yang, J. & Li, Z. Simultaneous attack of a stationary target using multiple missiles: a consensus-based approach. Sci. China Inf. Sci. 60, 070205 (2017). https://doi.org/10.1007/s11432-016-9089-7

Download citation

Keywords

  • simultaneous attack
  • consensus problem
  • cooperative control
  • distributed control
  • guidance law design