Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Modelling of tropospheric delays in geosynchronous synthetic aperture radar

  • 178 Accesses

  • 13 Citations

Abstract

As a direct consequence of the orbital height, the integration time in geosynchronous synthetic aperture radar (GEO SAR) with metric or decimetric azimuth resolutions is in the order of several hundreds or even thousands of seconds. With such long integration time, the compensation of residual tropospheric propagation terms poses one of the fundamental challenges associated with GEO SAR missions. In order to better characterise the impact of the propagation errors on GEO SAR imaging, we put forward a model for the simulation of the tropospheric delay appropriate for the accurate simulation of GEO SAR surveys. The suggested model, with a deterministic background component and a random turbulent one, incorporates some of the most recent meteorological data for the characterization of the troposphere. To illustrate the relevance of the derivation, the suggested model is used for performance estimation and raw data simulation of GEO SAR raw data. Substantial conclusion on the system impulse response and the associated calibration requirements is also drawn from the analysis.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Tomiyasu K. Synthetic aperture radar in geosynchronous orbit. In: Proceedings of Antennas and Propagation Symposium. Maryland: IEEE, 1978. 42–45

  2. 2

    Guarnieri A M, Bombaci O, Catalano T F, et al. ARGOS: a fractioned geosynchronous SAR. J Acta Astro, 2015. http://dx.doi.org/10.1016/j.actaastro.2015.11.022

  3. 3

    Rodon J R, Broquetas A, Makhoul E, et al. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation. IEEE Tran Geosci Remote Sens, 2014, 52: 6379–6391

  4. 4

    Hobbs S, Mitchell C, Forte B, et al. System design for geosynchronous synthetic aperture radar missions. IEEE Trans Geosci Remote Sens, 2014, 52: 7750–7763

  5. 5

    Dekker L P, Cassola M R, Zan F D, et al. Correlating synthetic aperture radar. IEEE Trans Geosci Remote Sens, 2016, 52: 2268–2284

  6. 6

    Recchia A, Guarnieri A M, Broquetas A, et al. Impact of scene decorrelation on geosynchronous SAR data focussing. IEEE Trans Geosci Remote Sens, 2016, 54: 1635–1646

  7. 7

    Hu C, Long T, Liu Z, et al. An improved frequency domain focussing method in geosynchronous SAR. IEEE Trans Geosci Remote Sens, 2014, 52: 5514–5528

  8. 8

    Sun G, Xing M, Wang Y, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data. IEEE Trans Geosci Remote Sens, 2014, 52: 4868–4880

  9. 9

    Li D, Wu M, Sun Z, et al. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 8: 3999–4009

  10. 10

    Hanssen R F. Radar Interferometry: Data Interpretation and Error Analysis. Berlin: Springer, 2001

  11. 11

    Breit H, Fritz T, Balss U, et al. TerraSAR-X SAR processing and products. IEEE Trans Geosci Remote Sens, 2010, 48: 727–740

  12. 12

    Iraola P P, Scheiber R, Cassola M R, et al. On the processing of very high resolution spaceborne SAR data. IEEE Trans Geosci Remote Sens, 2014, 52: 6003–6016

  13. 13

    Rodon J R, Broquetas A, Guarnieri A M, et al. Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation. IEEE Trans Geosci Remote Sens, 2013, 51: 4397–4404

  14. 14

    Dong X, Hu C, Tian Y, et al. Experimental study of ionospheric impacts on geosynchronous SAR using GPS signals, IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 9: 2171–2183

  15. 15

    Hu C, Li Y, Dong X, et al. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Trans Geosci Remote Sens, 2017, 55: 159–172

  16. 16

    Böhm J, Heinkelmann R, Schuh H. Short note: a global model of pressure and temperature for geodetic applications. J Geod, 2007, 81: 679–683

  17. 17

    Lagler K, Schindelegger M, Böhm J, et al. GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett, 2013, 40: 1069–1073

  18. 18

    Böhm J, Möller G, Schindelegger M, et al. Development of an improved empirical model for slant delay in the troposphere (GPT2w). GPS Solut, 2015, 19: 433–441

  19. 19

    Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The Use of Artificial Satellites for Geodesy. Washington: American Geophysical Union, 1972. 247–251

  20. 20

    Davis J L, Herring T A, Shapiro I I, et al. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci, 1985, 20: 1593–1607

  21. 21

    Askne J, Nordius H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci, 1987, 22: 379–386

  22. 22

    Böhm J, Werl B, Schuh H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res, 2006, 111: B02406

  23. 23

    Rasmussen C E, Williams C K. Gaussian Processes for Machine Learning. Massachusetts: the MIT Press, 2006. 84–85

  24. 24

    Bean B R, Dutton E J. Radio Meteorology. Washington: US Government Print Office, 1966. 49–51

  25. 25

    Smith E K, Weintraub S. The constants in the equation for atmospheric refraction index at radio frequencies. Proc IRE, 1953, 41: 1035–1037

  26. 26

    Mendes V. Modeling the neutral-atmospheric propagation delay in radiometric space techniques. Dissertation for Ph.D. Degree. New Brunswick: University of New Brunswick,1999. 55

  27. 27

    Leandro R L, Langley R B, Santos M C. UNB3m pack: a neutral atmosphere delay package for radiometric space techniques. GPS Solut, 2008, 12: 65–70

  28. 28

    Cassola M R, Iraola P P, Jäger M, et al. Estimation of tropospheric delay using synthetic aperture radar and squint diversity. In: Proceedings of International Geoscience and Remote Sensing Symposium. Melbourne: IEEE, 2013. 4491–4494

  29. 29

    Haurwitz B, Cowley A D. The diurnal and semidiurnal barometric oscillations global distribution and annual variation. Pure and Appl Geophys, 1973, 102: 193–222

  30. 30

    Göttsche F M, Olesen F S. Modeling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sens Envi, 2001, 76: 337–348

  31. 31

    Ephrath J E, Goudriaan J, Marani A. Modeling diurnal patterns of air temperature, radiation wind speed and relative humidity by equations from daily characteristics. Agric Syst, 1996, 51: 377–393

  32. 32

    Kolmogorov A N. Dissipation of energy in locally isotropic turbulence. Proc Royal Soc London, 1991, 434: 15–17

  33. 33

    Tatarski V I. Wave Propagation in a Turbulent Medium. New York: McGraw-Hill,1961. 46

  34. 34

    Knospe S, Jonsson S. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise. IEEE Trans Geosci Remote Sens. 2010, 48: 2057–2065

  35. 35

    Luhar A K, Britter R E. A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer. Atmos Environ, 1989, 23: 1911–1924

  36. 36

    Thomson D J, Physick W L, Maryon R H. Treatment of interfaces in random walk dispersion models. J Appl Meteor Climatol, 1997, 36: 1284–1295

  37. 37

    George W K. Lectures in Turbulence for the 21st Century. London: Imperial College of London,2013

  38. 38

    Chan K M, Wood R. The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J Geophys Res Atomos, 2013, 118: 12422–12434

  39. 39

    Zelenáková M, Purcz P, Hlavatá H, et al. Climate change in urban versus rural areas. Procedia Eng, 2015, 119: 1171–1180

  40. 40

    Rocca F. Modeling interferogram stacks. IEEE Trans Geosci Remote Sens, 2007, 45: 3289–3299

  41. 41

    Li D, Cassola M R, Iraola P P, et al. Exact reverse backprojection for SAR raw data generation of natural scenes. In: Proceedings of International Geoscience and Remote Sensing Symposium, Beijing, 2016. 3258–3261

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 41271459). The authors would like to thank Paco L´opez-Dekker for technical advice and the anonymous reviewers for their constructive comments.

Author information

Correspondence to Dexin Li or Marc Rodriguez-Cassola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Rodriguez-Cassola, M., Prats-Iraola, P. et al. Modelling of tropospheric delays in geosynchronous synthetic aperture radar. Sci. China Inf. Sci. 60, 060307 (2017). https://doi.org/10.1007/s11432-016-9065-1

Download citation

Keywords

  • geosynchronous SAR missions
  • propagation errors
  • tropospheric hydrostatic delay
  • topospheric wet delay
  • Kolmogorov power law
  • Matérn covariances
  • raw data simulation
  • reverse backprojection