Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities

Abstract

It is well known that the ionospheric scintillation caused by small-scale ionospheric irregularities is a major distortion source for low-frequency spaceborne synthetic aperture radar (SAR) imaging. For L-band geosynchronous earth orbit (GEO) SAR, the orbit height is ultra-high and the integration time is ultra-long, thus ionospheric irregularities may cause more significant distortions on the imaging focusing. To evaluate this effect, the generalized ambiguity function (GAF) is employed to establish the analytical model. The imaging resolution can be studied by calculating the second moment of GAF. Furthermore, since the scanning velocity of the ionospheric penetration point (IPP) for GEO SAR is much slower than that of low earth orbit (LEO) SAR, the convection velocity of the ionospheric irregularities is no longer negligible. Taking this into account, we derive a more accurate expression of ionospheric irregularities’ effect. The theoretical derivation is validated by numerical analyses and signal-level simulations.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Tomiyasu K, Pacelli J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans Geosci Remote Sens, 1983, 21: 324–329

  2. 2

    Hu C, Long T, Zeng T, et al. The accurate focusing and resolution analysis method in geosynchronous SAR. IEEE Trans Geosci Remote Sens, 2011, 49: 3548–3563

  3. 3

    Hu C, Liu Z P, Long T. An improved CS algorithm based on the curved trajectory in geosynchronous SAR. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2012, 5: 795–808

  4. 4

    Li D X, Wu M Q, Sun Z Y, et al. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 8: 3999–4009

  5. 5

    Zeng T, Yin W, Ding Z G, et al. Motion and Doppler characteristics analysis based on circular motion model in geosynchronous SAR. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 9: 1132–1142

  6. 6

    Hu C, Tian Y, Zeng T, et al. Adaptive secondary range compression algorithm in geosynchronous SAR. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 9: 1397–1413

  7. 7

    Chen J L, Sun G C, Xing M D, et al. A parameter optimization model for geosynchronous SAR sensor in aspects of signal bandwidth and integration time. IEEE Geosci Remote Sens Lett, 2016, 13: 1374–1378

  8. 8

    Ding Z G, Shu B Z, Yin W, et al. A modified frequency domain algorithm based on optimal azimuth quadratic factor compensation for geosynchronous SAR imaging. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 9: 1119–1131

  9. 9

    Dong X C, Hu C, Tian W M, et al. Feasibility study of inclined geosynchronous SAR focusing using Beidou IGSO signals. Sci China Inf Sci, 2016, 59: 129302

  10. 10

    Xu Z W, Wu J, Wu Z S. A survey of ionosphere effects on space-based radar. Waves Random Media, 2004, 14: 189–273

  11. 11

    Belcher D P. Theoretical limits on SAR imposed by the ionosphere. IET Radar Sonar Navig, 2008, 2: 435–448

  12. 12

    Li L, Zhang Y S, Dong Z. Ionospheric polarimetric dispersion effect on low-frequency spaceborne SAR imaging. IEEE Geosci Remote Sens Lett, 2014, 11: 2163–2167

  13. 13

    Shkarofsky I P. Turbulence functions useful for probes and for scattering analysis. Can J Phys, 1968, 46: 2683–2702

  14. 14

    Yeh K C, Liu C H. Radio wave scintillations in the ionosphere. Proc IEEE, 1982, 70: 324–360

  15. 15

    Rino C L. A power law phase screen model for ionospheric scintillation 1. Weak Scatter Radio Sci, 1979, 14: 1135–1145

  16. 16

    Quegan S, Lamont J. Ionospheric and tropospheric effects on the synthetic aperture radar performance. Int J Remote Sens, 1986, 7: 525–539

  17. 17

    Neil C R, Paul S C, Keith M G. Measurements and simulation of ionospheric scattering on VHF and UHF radar signals: channel scattering function. Radio Sci, 2009, 44: 1–10

  18. 18

    Charles S C, Keith M G, Ronald G C. Simulating the impacts of ionospheric scintillation on L band SAR image formation. Radio Sci, 2012, 47: 1–14

  19. 19

    Wang C, Zhang M, Xu Z W, et al. Cubic phase distortion and irregular degradation on SAR imaging due to the ionosphere. IEEE Trans Geosci Remote Sens, 2015, 53: 3442–3451

  20. 20

    Tian Y, Hu C, Dong X C, et al. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging. IEEE Geosci Remote Sens Lett, 2015, 12: 721–725

  21. 21

    Hu C, Tian Y, Yang X P, et al. Background ionosphere effects on geosynchronous SAR focusing: theoretical analysis and verification based on the BeiDou navigation satellite system (BDS). IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 9: 1143–1162

  22. 22

    Li Y H, Hu C, Dong X C, et al. Impacts of ionospheric scintillation on geosynchronous SAR focusing: preliminary experiments and analysis. Sci China Inf Sci, 2015, 58: 109301

  23. 23

    Hu C, Li Y H, Dong X C, et al. Avoiding the ionospheric scintillation interference on geosynchronous SAR by orbit optimization. IEEE Geosci Remote Sens Lett, 2016, 13: 1676–1680

  24. 24

    Dong X C, Hu C, Tian Y, et al. Experimental study of ionospheric impacts on geosynchronous SAR using GPS signals. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 9: 2171–2183

  25. 25

    Hu C, Li Y H, Dong X C, et al. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Trans Geosci Remote Sens, 2017, 55: 159–172

  26. 26

    Ishimaru A, Kuga Y, Liu J, et al. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz. Radio Sci, 1999, 34: 257–268

  27. 27

    Liu J, Kuga Y, Ishimaru A, et al. Ionospheric effects on SAR imaging: a numerical study. IEEE Trans Geosci Remote Sens, 2003, 41: 939–947

  28. 28

    Li L L, Li F. SAR imaging degradation by ionospheric irregularities based on TFTPCF analysis. IEEE Trans Geosci Remote Sens, 2007, 45: 1123–1130

  29. 29

    Xu Z W, Wu J, Wu Z S. Potential effects of the ionosphere on space-based SAR imaging. IEEE Trans Antennas Propag, 2008, 56: 1968–1975

  30. 30

    Wang C, Zhang M, Xu Z W, et al. Effects of anisotropic ionospheric irregularities on space-borne SAR imaging. IEEE Trans Antennas Propag, 2014, 62: 4664–4673

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 41271459, 61501477).

Author information

Correspondence to Qilei Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Zhang, Q., Zhang, Y. et al. L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities. Sci. China Inf. Sci. 60, 060308 (2017). https://doi.org/10.1007/s11432-016-9064-1

Download citation

Keywords

  • ionospheric irregularities
  • L-band GEO SAR
  • generalized ambiguity function
  • imaging resolution
  • convection velocity