Advertisement

Quasi-consistent fusion navigation algorithm for DSS

  • Qiya Su
  • Yi Huang
  • Yanguang Jiang
  • Haitao Fang
Research Paper

Abstract

A fusion navigation algorithm for the distributed satellites system (DSS) utilizing relative range measurements is proposed in this paper. Based on the quasi-consistent extended Kalman filter (QCEKF), an on-line evaluation of the navigation precision can be provided by the fusion navigation algorithm. In addition, the upper bound for the estimation error obtained from the fusion navigation algorithm is lower than those with any groups of measurements, which indicates that the fusion navigation algorithm can automatically choose the suitable redundant measurements to improve the navigation precision. The simulations show the feasibility and effectiveness of the proposed fusion navigation algorithm.

Keywords

quasi-consistent extended Kalman filter (QCEKF) extended Kalman filter (EKF) fusion algorithm navigation distributed satellites system (DSS) 

Notes

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2014CB845303) and National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences.

References

  1. 1.
    Schetter T, Campbell M, Surka D. Multiple agent-based autonomy for satellite constellations. Artif Intell, 2003, 145: 147–180CrossRefGoogle Scholar
  2. 2.
    Ley W, Wittmann K, Hallmann W. Handbuch der Raumfahrttechnik. Munich: Carl Hanser Verlag GmbH & CO. KG, 2011Google Scholar
  3. 3.
    Tapley B D, Ries J C, Davis G W, et al. Precision orbit determination for TOPEX/POSEIDON. J Geophys Res, 1994, 99: 24383–24404CrossRefGoogle Scholar
  4. 4.
    Psiaki M L. Autonomous orbit determination for two spacecraft from relative position measurements. J Guid Control Dynam, 1999, 22: 305–312CrossRefGoogle Scholar
  5. 5.
    Yim J R, Crassidis J L, Junkins J L. Autonomous orbit navigation of two spacecraft system using relative line of sight vector measurements. AAS Paper 04–257, 2004Google Scholar
  6. 6.
    Markley F L. Autonomous navigation using landmark and intersatellite data. AIAA Paper 84–1987, 1984CrossRefGoogle Scholar
  7. 7.
    Liu Y, Liu L. Orbit determination using satellite-to-satellite tracking data. Chin J Astron Astrophys, 2001, 1: 281–286CrossRefGoogle Scholar
  8. 8.
    Grechkoseev A K. Study of observability of motion of an orbital group of navigation space system using intersatellite range measurements. I. J Comput Sys Sci Int, 2011, 50: 293–308MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grechkoseev A K. Study of observability of motion of an orbital group of navigation space system using intersatellite range measurements. II. J Comput Syst Sci Int, 2011, 50: 472–482MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hill K, Born G H. Autonomous interplanetary orbit determination using satellite-to-satellite tracking. J Guid Control Dynam, 2007, 30: 679–686CrossRefGoogle Scholar
  11. 11.
    Hill K, Born G H. Autonomous orbit determination from lunar halo orbits using crosslink range. J Spacecraft Rockets, 2008, 45: 548–553CrossRefGoogle Scholar
  12. 12.
    Huxel P J, Bishop R H. Navigation algorithms and observability analysis for formation flying missions. J Guid Control Dynam, 2009, 32: 1218–1231CrossRefGoogle Scholar
  13. 13.
    Huxel P J. Navigation algorithms and observability analysis for formation flying missions. Dissertation for Ph.D. Degree. Austin: University of Texas, 2006Google Scholar
  14. 14.
    Shorshi G, Bar-Itzhack I Y. Satellite autonomous navigation and orbit determination using magnetometers. In: Proceedings of the 31st Conference on Decision and Control, Tucson, 1992. 542–548Google Scholar
  15. 15.
    Wiegand M. Autonomous satellite navigation via Kalman filter of magnetometer data. Acta Astronaut, 1996, 38: 395–403CrossRefGoogle Scholar
  16. 16.
    Li Y, Xu X S. The application of EKF and UKF to the SINS/GPS integrated navigation systems. In: Proceedings of the 2nd International Conference on Information Engineering and Computer Science (ICIECS), Wuhan, 2010. 1–5Google Scholar
  17. 17.
    Xia H W, Diao Y H, Ma G C, et al. X-ray pulsar relative navigation approach based on extended Kalman filter. J Chin Inertial Tech, 2014, 22: 619–623Google Scholar
  18. 18.
    Jiang Y G, Xue W C, Huang Y, et al. The consistent extended Kalman filter. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 6838–6845Google Scholar
  19. 19.
    Chong C Y. Hierarchical estimation. In: Proceedings of the 2nd MIT/ONR Workshop on C3, Monterey, 1979. 205–220Google Scholar
  20. 20.
    Chong C Y, Chang K C, Mori S. Distributed tracking in distributed sensor networks. In: Proceedings of the American Contrlol Conference, Seattle, 1986Google Scholar
  21. 21.
    Chang K C, Zhi T, Saha R K. Performance evaluation of track fusion with information matrix filter. IEEE Trans Aero Elec Syst, 2002, 38: 455–466CrossRefGoogle Scholar
  22. 22.
    Roy A E. Orbital Motion. 4th ed. Bristol: Institute of Physics Publishing, 2005MATHGoogle Scholar
  23. 23.
    Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Application to Tracking and Navigation. New York: John Wiley & Sons Inc., 2001CrossRefGoogle Scholar
  24. 24.
    Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems. In: Proceedings of SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, 1997. 182–193Google Scholar
  25. 25.
    Jiang Y G. On quasi-consistent nonlinear Kalman filter. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2016Google Scholar
  26. 26.
    Sabol C, Burns R, McLaughlin C A. Satellite formation flying design and evolution. J Spacecraft Rockets, 2001, 38: 270–278CrossRefGoogle Scholar
  27. 27.
    Simon D. Optimal State Estimation — Kalman, H , and Nonlinear Approaches. New Jersey: John Wiley & Sons Inc., 2006CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qiya Su
    • 1
  • Yi Huang
    • 1
    • 2
  • Yanguang Jiang
    • 3
  • Haitao Fang
    • 1
    • 2
  1. 1.Key Laboratory of Systems and Control, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing Institute of Control and Electronics TechnologyBeijingChina

Personalised recommendations