Skip to main content
Log in

Quasi-consistent fusion navigation algorithm for DSS

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A fusion navigation algorithm for the distributed satellites system (DSS) utilizing relative range measurements is proposed in this paper. Based on the quasi-consistent extended Kalman filter (QCEKF), an on-line evaluation of the navigation precision can be provided by the fusion navigation algorithm. In addition, the upper bound for the estimation error obtained from the fusion navigation algorithm is lower than those with any groups of measurements, which indicates that the fusion navigation algorithm can automatically choose the suitable redundant measurements to improve the navigation precision. The simulations show the feasibility and effectiveness of the proposed fusion navigation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schetter T, Campbell M, Surka D. Multiple agent-based autonomy for satellite constellations. Artif Intell, 2003, 145: 147–180

    Article  Google Scholar 

  2. Ley W, Wittmann K, Hallmann W. Handbuch der Raumfahrttechnik. Munich: Carl Hanser Verlag GmbH & CO. KG, 2011

    Google Scholar 

  3. Tapley B D, Ries J C, Davis G W, et al. Precision orbit determination for TOPEX/POSEIDON. J Geophys Res, 1994, 99: 24383–24404

    Article  Google Scholar 

  4. Psiaki M L. Autonomous orbit determination for two spacecraft from relative position measurements. J Guid Control Dynam, 1999, 22: 305–312

    Article  Google Scholar 

  5. Yim J R, Crassidis J L, Junkins J L. Autonomous orbit navigation of two spacecraft system using relative line of sight vector measurements. AAS Paper 04–257, 2004

    Google Scholar 

  6. Markley F L. Autonomous navigation using landmark and intersatellite data. AIAA Paper 84–1987, 1984

    Book  Google Scholar 

  7. Liu Y, Liu L. Orbit determination using satellite-to-satellite tracking data. Chin J Astron Astrophys, 2001, 1: 281–286

    Article  Google Scholar 

  8. Grechkoseev A K. Study of observability of motion of an orbital group of navigation space system using intersatellite range measurements. I. J Comput Sys Sci Int, 2011, 50: 293–308

    Article  MathSciNet  MATH  Google Scholar 

  9. Grechkoseev A K. Study of observability of motion of an orbital group of navigation space system using intersatellite range measurements. II. J Comput Syst Sci Int, 2011, 50: 472–482

    Article  MathSciNet  MATH  Google Scholar 

  10. Hill K, Born G H. Autonomous interplanetary orbit determination using satellite-to-satellite tracking. J Guid Control Dynam, 2007, 30: 679–686

    Article  Google Scholar 

  11. Hill K, Born G H. Autonomous orbit determination from lunar halo orbits using crosslink range. J Spacecraft Rockets, 2008, 45: 548–553

    Article  Google Scholar 

  12. Huxel P J, Bishop R H. Navigation algorithms and observability analysis for formation flying missions. J Guid Control Dynam, 2009, 32: 1218–1231

    Article  Google Scholar 

  13. Huxel P J. Navigation algorithms and observability analysis for formation flying missions. Dissertation for Ph.D. Degree. Austin: University of Texas, 2006

    Google Scholar 

  14. Shorshi G, Bar-Itzhack I Y. Satellite autonomous navigation and orbit determination using magnetometers. In: Proceedings of the 31st Conference on Decision and Control, Tucson, 1992. 542–548

    Google Scholar 

  15. Wiegand M. Autonomous satellite navigation via Kalman filter of magnetometer data. Acta Astronaut, 1996, 38: 395–403

    Article  Google Scholar 

  16. Li Y, Xu X S. The application of EKF and UKF to the SINS/GPS integrated navigation systems. In: Proceedings of the 2nd International Conference on Information Engineering and Computer Science (ICIECS), Wuhan, 2010. 1–5

    Google Scholar 

  17. Xia H W, Diao Y H, Ma G C, et al. X-ray pulsar relative navigation approach based on extended Kalman filter. J Chin Inertial Tech, 2014, 22: 619–623

    Google Scholar 

  18. Jiang Y G, Xue W C, Huang Y, et al. The consistent extended Kalman filter. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 6838–6845

    Google Scholar 

  19. Chong C Y. Hierarchical estimation. In: Proceedings of the 2nd MIT/ONR Workshop on C3, Monterey, 1979. 205–220

    Google Scholar 

  20. Chong C Y, Chang K C, Mori S. Distributed tracking in distributed sensor networks. In: Proceedings of the American Contrlol Conference, Seattle, 1986

    Google Scholar 

  21. Chang K C, Zhi T, Saha R K. Performance evaluation of track fusion with information matrix filter. IEEE Trans Aero Elec Syst, 2002, 38: 455–466

    Article  Google Scholar 

  22. Roy A E. Orbital Motion. 4th ed. Bristol: Institute of Physics Publishing, 2005

    MATH  Google Scholar 

  23. Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Application to Tracking and Navigation. New York: John Wiley & Sons Inc., 2001

    Book  Google Scholar 

  24. Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems. In: Proceedings of SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, 1997. 182–193

    Google Scholar 

  25. Jiang Y G. On quasi-consistent nonlinear Kalman filter. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2016

    Google Scholar 

  26. Sabol C, Burns R, McLaughlin C A. Satellite formation flying design and evolution. J Spacecraft Rockets, 2001, 38: 270–278

    Article  Google Scholar 

  27. Simon D. Optimal State Estimation — Kalman, H , and Nonlinear Approaches. New Jersey: John Wiley & Sons Inc., 2006

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2014CB845303) and National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiya Su.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Huang, Y., Jiang, Y. et al. Quasi-consistent fusion navigation algorithm for DSS. Sci. China Inf. Sci. 61, 012201 (2018). https://doi.org/10.1007/s11432-016-9054-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9054-x

Keywords

Navigation