Two classes of rotation symmetric semi-bent functions

This is a preview of subscription content, access via your institution.

References

  1. 1

    Zhang F R, Carlet C, Hu Y P, et al. New secondary constructions of bent functions. Appl Algebra Eng Commun Comput, 2016, 27: 413–434

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Zhang W G, Xiao G Z. Construction of almost optimal resilient Boolean functions via concatenating Maiorana-Mcfarland functions. Sci China Inf Sci, 2011, 54: 909–912

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Mesnager S. On semi-bent functions and related plateaued functions over the galois field Fn 2. In: Open Problems in Mathematics and Computational Science. Berlin: Springer, 2014. 243–273

    Google Scholar 

  4. 4

    Filiol E, Fontaine C. Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Advances in Cryptology—EUROCRYPT’98. Berlin: Springer, 1998. 475–488

    Google Scholar 

  5. 5

    Pieprzyk J, Qu C X. Rotation-symmetric functions and fast hashing. In: Proceedings of the 3rd Australasian Conference on Information Security and Privacy. London: Springer, 1998. 169–180

    Google Scholar 

  6. 6

    Kavut S, Maitra S. Patterson—Wiedemann type functions on 21 variables with nonlinearity greater than bent concatenation bound. IEEE Trans Inf Theory, 2016, 62: 2277–2282

    MathSciNet  Article  MATH  Google Scholar 

  7. 7

    Kavut S, Maitra S, Yücel M D. Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans Inf Theory, 2007, 53: 1743–1751

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Carlet C, Gao G P, Liu W F. Results on constructions of rotation symmetric bent and semi-bent functions. In: Sequences and Their Applications-SETA 2014. Berlin: Springer, 2014. 21–33

    Google Scholar 

  9. 9

    Gao G P, Zhang X Y, Liu W F, et al. Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans Inf Theory, 2012, 58: 4908–4913

    MathSciNet  Article  Google Scholar 

  10. 10

    Stănică P, Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties. Discrete Appl Math, 2008, 156: 1567–1580

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61472472, 61272037, 61402366) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2016JM6033, 2015JQ6262). Qinglan ZHAO is supported by New Star Team of Xi’an University of Posts and Telecommunications.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong Zheng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zheng, D. Two classes of rotation symmetric semi-bent functions. Sci. China Inf. Sci. 60, 068103 (2017). https://doi.org/10.1007/s11432-016-9036-y

Download citation