Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Two classes of rotation symmetric semi-bent functions

  • 98 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1

    Zhang F R, Carlet C, Hu Y P, et al. New secondary constructions of bent functions. Appl Algebra Eng Commun Comput, 2016, 27: 413–434

  2. 2

    Zhang W G, Xiao G Z. Construction of almost optimal resilient Boolean functions via concatenating Maiorana-Mcfarland functions. Sci China Inf Sci, 2011, 54: 909–912

  3. 3

    Mesnager S. On semi-bent functions and related plateaued functions over the galois field Fn 2. In: Open Problems in Mathematics and Computational Science. Berlin: Springer, 2014. 243–273

  4. 4

    Filiol E, Fontaine C. Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Advances in Cryptology—EUROCRYPT’98. Berlin: Springer, 1998. 475–488

  5. 5

    Pieprzyk J, Qu C X. Rotation-symmetric functions and fast hashing. In: Proceedings of the 3rd Australasian Conference on Information Security and Privacy. London: Springer, 1998. 169–180

  6. 6

    Kavut S, Maitra S. Patterson—Wiedemann type functions on 21 variables with nonlinearity greater than bent concatenation bound. IEEE Trans Inf Theory, 2016, 62: 2277–2282

  7. 7

    Kavut S, Maitra S, Yücel M D. Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans Inf Theory, 2007, 53: 1743–1751

  8. 8

    Carlet C, Gao G P, Liu W F. Results on constructions of rotation symmetric bent and semi-bent functions. In: Sequences and Their Applications-SETA 2014. Berlin: Springer, 2014. 21–33

  9. 9

    Gao G P, Zhang X Y, Liu W F, et al. Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans Inf Theory, 2012, 58: 4908–4913

  10. 10

    Stănică P, Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties. Discrete Appl Math, 2008, 156: 1567–1580

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61472472, 61272037, 61402366) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2016JM6033, 2015JQ6262). Qinglan ZHAO is supported by New Star Team of Xi’an University of Posts and Telecommunications.

Author information

Correspondence to Dong Zheng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zheng, D. Two classes of rotation symmetric semi-bent functions. Sci. China Inf. Sci. 60, 068103 (2017). https://doi.org/10.1007/s11432-016-9036-y

Download citation