Two classes of rotation symmetric semi-bent functions

Highlight

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61472472, 61272037, 61402366) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant Nos. 2016JM6033, 2015JQ6262). Qinglan ZHAO is supported by New Star Team of Xi’an University of Posts and Telecommunications.

Supplementary material

11432_2016_9036_MOESM1_ESM.pdf (261 kb)
Supplementary material, approximately 261 KB.

References

  1. 1.
    Zhang F R, Carlet C, Hu Y P, et al. New secondary constructions of bent functions. Appl Algebra Eng Commun Comput, 2016, 27: 413–434MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Zhang W G, Xiao G Z. Construction of almost optimal resilient Boolean functions via concatenating Maiorana-Mcfarland functions. Sci China Inf Sci, 2011, 54: 909–912MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Mesnager S. On semi-bent functions and related plateaued functions over the galois field Fn 2. In: Open Problems in Mathematics and Computational Science. Berlin: Springer, 2014. 243–273Google Scholar
  4. 4.
    Filiol E, Fontaine C. Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Advances in Cryptology—EUROCRYPT’98. Berlin: Springer, 1998. 475–488Google Scholar
  5. 5.
    Pieprzyk J, Qu C X. Rotation-symmetric functions and fast hashing. In: Proceedings of the 3rd Australasian Conference on Information Security and Privacy. London: Springer, 1998. 169–180CrossRefGoogle Scholar
  6. 6.
    Kavut S, Maitra S. Patterson—Wiedemann type functions on 21 variables with nonlinearity greater than bent concatenation bound. IEEE Trans Inf Theory, 2016, 62: 2277–2282MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kavut S, Maitra S, Yücel M D. Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans Inf Theory, 2007, 53: 1743–1751MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Carlet C, Gao G P, Liu W F. Results on constructions of rotation symmetric bent and semi-bent functions. In: Sequences and Their Applications-SETA 2014. Berlin: Springer, 2014. 21–33Google Scholar
  9. 9.
    Gao G P, Zhang X Y, Liu W F, et al. Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans Inf Theory, 2012, 58: 4908–4913MathSciNetCrossRefGoogle Scholar
  10. 10.
    Stănică P, Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties. Discrete Appl Math, 2008, 156: 1567–1580MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Information Security EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.National Engineering Laboratory for Wireless SecurityXi’an University of Post and TelecommunicationsXi’anChina

Personalised recommendations