Skip to main content
Log in

An overview of the configuration and manipulation of soft robotics for on-orbit servicing

  • Review
  • Special Focus on Space Flexible Manipulation and Control for On-orbit Servicing
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Soft robots refer to robots that are softer and more flexible when compared with conventional rigid-bodied robots. Soft robots are adapted to unstructured environments due to their flexibility, deformability and energy-absorbing properties. Thus, they have tremendous application prospects in on-orbit servicing (OOS). This study discusses the configuration and manipulation of soft robotics. Usually, learning from living beings is used to develop the configurations of most soft robots. In this study, typical soft robots are introduced based on what they mimic. The discussion of manipulation is divided into two parts, namely actuation and control. The study also involves describing and comparing several types of actuations. Studies on the control of soft robots are also reviewed. In this study, potential application of soft robotics for on-orbit servicing is analyzed. A hybrid configuration and manipulation of space soft robots for future research are proposed based on the current development of soft robotics, and some challenges are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Long A, Richards M, Hastings D E. On-orbit servicing: a new value proposition for satellite design and operation. J Spacecraft Rockets, 2007, 44: 964–976

    Article  Google Scholar 

  2. Larouche B P, Zhu G Z H. Investigation of impedance controller for autonomous on-orbit servicing robot. Can Aeronaut Space J, 2013, 59: 15–24

    Article  Google Scholar 

  3. Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Prog Aerosp Sci, 2014, 68: 1–26

    Article  Google Scholar 

  4. Sallaberger C, Force S P T, Agency C S. Canadian space robotic activities. Acta Astronaut, 1997, 41: 239–246

    Article  Google Scholar 

  5. Kasai T, Oda M, Suzuki T. Results of the ETS-7 Mission-Rendezvous docking and space robotics experiments. In: Proceedings of Artificial Intelligence, Robotics and Automation in Space, Noordwijk, 1999. 440: 299

    Google Scholar 

  6. Friend R B. Orbital express program summary and mission overview. In: Proceedings of SPIE Defense and Security Symposium, Orlando, 2008. 695803

    Book  Google Scholar 

  7. Yong L, Nan Y J, Wang Y Z, et al. Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO. Sci China Inf Sci, in press. doi: 10.1007/s11432-016-0566-7

  8. Sabatini M, Gasbarri P, Monti R, et al. Vibration control of a flexible space manipulator during on orbit operations. Acta Astronaut, 2012, 73: 109–121

    Article  Google Scholar 

  9. Abiko S, Yoshida K. An adaptive control of a space manipulator for vibration suppression. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 2005. 2167–2172

    Google Scholar 

  10. Ma O, Wang J. Model order reduction for impact-contact dynamics simulations of flexible manipulators. Robotica, 2007, 25: 397–407

    Article  Google Scholar 

  11. Cao Y, Shang J, Liang K, et al. Review of soft-bodied robots. Chinese J Mech Eng, 2012, 48: 25–33

    Article  Google Scholar 

  12. Trivedi D, Rahn C D, Kier W M, et al. Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech, 2008, 5: 99–117

    Article  Google Scholar 

  13. Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol, 2013, 31: 287–294

    Article  Google Scholar 

  14. Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

    Article  Google Scholar 

  15. Lin H T, Leisk G G, Trimmer B A. Soft robots in space: a perspective for soft robotics. Acta Futura, 2013, 6: 69–79

    Google Scholar 

  16. Mehling J S, Diftler M A, Chu M, et al. A minimally invasive tendril robot for in-space inspection. In: Proceedings of International Conference on Biomedical Robotics and Biomechatronics (BioRob), Pisa, 2006. 690–695

    Google Scholar 

  17. Trivedi D, Lotfi A, Rahn C D. Geometrically exact models for soft robotic manipulators. IEEE Trans Robot, 2008, 24: 773–780

    Article  Google Scholar 

  18. Cianchetti M, Arienti A, Follador M, et al. Design concept and validation of a robotic arm inspired by the octopus. Mater Sci Eng C, 2011, 31: 1230–1239

    Article  Google Scholar 

  19. Webster III R J, Romano J M, Cowan N J. Mechanics of precurved-tube continuum robots. IEEE Trans Robot, 2009, 25: 67–78

    Article  Google Scholar 

  20. Walker I D. Robot strings: long, thin continuum robots. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2013. 1–12

    Google Scholar 

  21. Grissom M D, Chitrakaran V, Dienno D, et al. Design and experimental testing of the OctArm soft robot manipulator. In: Proceedings of SPIE Defense and Security Symposium, Orlando, 2006. 62301F

    Book  Google Scholar 

  22. Jones B A, Walker I D. Limiting-case analysis of continuum trunk kinematics. In: Proceedings of IEEE International Conference on Robotics and Automation, Roma, 2007. 1363–1368

    Google Scholar 

  23. Gravagne I A, Walker I D. Manipulability, force, and compliance analysis for planar continuum manipulators. IEEE Trans Robotic Autom, 2002, 18: 263–273

    Article  Google Scholar 

  24. Jones B A, Walker I D. Practical kinematics for real-time implementation of continuum robots. IEEE Trans Robot, 2006, 22: 1087–1099

    Article  Google Scholar 

  25. Lu Y K, Xu M, Wu Y H, et al. System simulation of snake travelling. Optics Precis Eng, 2001, 9: 542–547

    Google Scholar 

  26. Rosenthal M, Pei Q. Multiple-degrees-of-freedom roll actuators. In: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Amsterdam: Elsevier, 2011. 91–102

    Google Scholar 

  27. Li C, Rahn C D. Design of continuous backbone, cable-driven robots. J Mech Design, 2002, 124: 265–271

    Article  Google Scholar 

  28. Marchese A D, Komorowski K, Onal C D, et al. Design and control of a soft and continuously deformable 2D robotic manipulation system. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014. 2189–2196

    Google Scholar 

  29. Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir Biomim, 2012, 7: 025004

    Article  Google Scholar 

  30. Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir Biomim, 2012, 7: 025005

    Article  Google Scholar 

  31. Laschi C, Mazzolai B, Mattoli V, et al. Design of a biomimetic robotic octopus arm. Bioinspir Biomim, 2009, 4: 015006

    Article  Google Scholar 

  32. Hou J, Bonser R H C, Jeronimidis G. Design of a biomimetic skin for an octopus-inspired robot-part I: characterising octopus skin. J Bionic Eng, 2011, 8: 288–296

    Article  Google Scholar 

  33. Hou J, Bonser R H C, Jeronimidis G. Design of a biomimetic skin for an octopus-inspired robot-part II: development of the skin artefact. J Bionic Eng, 2011, 8: 297–304

    Article  Google Scholar 

  34. Calisti M, Giorelli M, Levy G, et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir Biomim, 2011, 6: 036002

    Article  Google Scholar 

  35. Laschi C, Mazzolai B, Mattoli V, et al. Design and development of a soft actuator for a robot inspired by the octopus arm. In: Proceedings of the 11th International Symposium of Experimental Robotics, Athens, 2008. 25–33

    Google Scholar 

  36. Nakajima K, Hauser H, Kang R, et al. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front Comput Neuro, 2013, 7: 91

    Google Scholar 

  37. Calisti M, Arienti A, Giannaccini M E, et al. Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform In: Proceedings of the 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, 2010. 461–466

    Google Scholar 

  38. Cianchetti M, Follador M, Mazzolai B, et al. Design and development of a soft robotic octopus arm exploiting embodied intelligence. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), St Paul, 2012. 5271–5276

    Google Scholar 

  39. Simaan N. Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization. In: Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, 2005. 3012–3017

    Google Scholar 

  40. Xu K, Simaan N. An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot, 2008, 24: 576–587

    Article  Google Scholar 

  41. Choi D G, Yi B J, Kim W K. Design of a spring backbone micro endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007. 1815–1821

    Google Scholar 

  42. Peirs J, van Brussel H, Reynaerts D, et al. A flexible distal tip with two degrees of freedom for enhanced dexterity in endoscopic robot surgery. In: Proceedings of the 13th Micromechanics Europe Workshop, Sinaia, 2002. 271–274

    Google Scholar 

  43. Camarillo D B, Milne C F, Carlson C R, et al. Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Robot, 2008, 24: 1262–1273

    Article  Google Scholar 

  44. Camarillo D B, Carlson C R, Salisbury J K. Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Trans Robot, 2009, 25: 798–808

    Article  Google Scholar 

  45. Hu H Y, Wang P F, Sun L N, et al. Kinematic analysis and simulation for cable-driven continuum robot. J Mech Eng, 2010, 19: 1–8

    Article  Google Scholar 

  46. Sokolowski W, Metcalfe A, Hayashi S, et al. Medical applications of shape memory polymers. Biomed Mater, 2007, 2: 23–27

    Article  Google Scholar 

  47. Th S W, Singhal P, Wilson T S, et al. Biomedical applications of thermally activated shape memory polymers. J Mater Chem, 2010, 20: 3356–3366

    Article  Google Scholar 

  48. Chen G, Pham M T, Redarce T. Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Robot Auton Syst, 2009, 57: 712–722

    Article  Google Scholar 

  49. Rucker D C, Webster R J. Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation. IEEE Trans Bio-Med Eng, 2009, 56: 2308–2311

    Article  Google Scholar 

  50. Robinson G, Davies J B C. Continuum robots-a state of the art. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation (ICRA), Detroit, 1999. 4: 2849–2854

    Google Scholar 

  51. Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists. Angewandte Chemie, 2011, 123: 1930–1935

    Article  Google Scholar 

  52. Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation. Appl Phys Lett, 2007, 90: 081916

    Article  Google Scholar 

  53. Araromi O A, Gavrilovich I, Shintake J, et al. Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE Asme Trans Mechatron, 2015, 20: 438–446

    Article  Google Scholar 

  54. Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv Mater, 2016, 28: 231–238

    Article  Google Scholar 

  55. Suzumori K, Iikura S, Tanaka H. Applying a flexible microactuator to robotic mechanisms. IEEE Control Syst, 1992, 12: 21–27

    Article  Google Scholar 

  56. Li A, Yang K, Gu C. A flexible robot hand with embedded SMA actuators. Electric Mach Control, 2006, 10: 238–241

    Google Scholar 

  57. Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res, 2016, 35: 161–185

    Article  Google Scholar 

  58. Steltz E, Mozeika A, Rodenberg N, et al. Jsel: jamming skin enabled locomotion. In: Prcoeedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009. 5672–5677

    Google Scholar 

  59. Brown E, Rodenberg N, Amend J, et al. Universal robotic gripper based on the jamming of granular material. Natl Acad Sci, 2010, 107: 18809–18814

    Article  Google Scholar 

  60. Anderson I A, Gisby T A, McKay T G, et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys, 2012, 112: 041101

    Article  Google Scholar 

  61. Kofod G, Paajanen M, Bauer S. Self-organized minimum-energy structures for dielectric elastomer actuators. Appl Phys A, 2006, 85: 141–143

    Article  Google Scholar 

  62. Mangan E V, Kingsley D A, Quinn R D, et al. Development of a peristaltic endoscope. In: Proeedings of IEEE International Conference on Robotics and Automation (ICRA), Washington, 2002. 347–352

    Google Scholar 

  63. Menciassi A, Gorini S, Pernorio G, et al. A SMA actuated artificial earthworm. In: Proeedings of IEEE International Conference on Robotics and Automation (ICRA), New Orleans, 2004. 4: 3282–3287

    Google Scholar 

  64. Yuk H, Kim D, Lee H, et al. Shape memory alloy-based small crawling robots inspired by C. elegans. Bioinspir Biomim, 2011, 6: 046002

    Article  Google Scholar 

  65. Boxerbaum A S, Chiel H J, Quinn R D. Softworm: a soft, biologically inspired worm-like robot. In: Proceedings of Neuroscience Abstracts, Chicago, 2009. 315: 44106

    Google Scholar 

  66. Seok S, Onal C D, Wood R, et al. Peristaltic locomotion with antagonistic actuators in soft robotics. In: Proeedings of IEEE International Conference on Robotics and Automation (ICRA), Anchorage, 2010. 1228–1233

    Google Scholar 

  67. Kim S, Hawkes E, Choy K, et al. Micro artificial muscle fiber using NiTi spring for soft robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009. 2228–2234

    Google Scholar 

  68. Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot. Natl Acad Sci, 2011, 108: 20400–20403

    Article  Google Scholar 

  69. Godage I S, Nanayakkara T, Caldwell D G. Locomotion with continuum limbs. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012. 293–298

    Google Scholar 

  70. Onal C D, Rus D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir Biomim, 2013, 8: 026003

    Article  Google Scholar 

  71. Koh J S, Cho K J. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE Asme Trans Mechatron, 2013, 18: 419–429

    Article  Google Scholar 

  72. Saunders F, Trimmer B A, Rife J. Modeling locomotion of a soft-bodied arthropod using inverse dynamics. Bioinspir Biomim, 2010, 6: 016001

    Article  Google Scholar 

  73. Lin H T, Leisk G G, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim, 2011, 6: 026007

    Article  Google Scholar 

  74. Morin S A, Shepherd R F, Kwok S W, et al. Camouflage and display for soft machines. Science, 2012, 337: 828–832

    Article  Google Scholar 

  75. Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Edit, 2013, 52: 2892–2896

    Article  Google Scholar 

  76. Otake M, Kagami Y, Kuniyoshi Y, et al. Inverse dynamics of gel robots made of electro-active polymer gel. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Taipei, 2003. 2: 2299–2304

    Google Scholar 

  77. Pei Q, Rosenthal M, Stanford S, et al. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mater Struct, 2004, 13: N86

    Google Scholar 

  78. Shi L, Guo S, Li M, et al. A novel soft biomimetic microrobot with two motion attitudes. Sensors, 2012, 12: 16732–16758

    Article  Google Scholar 

  79. Bar-Cohen Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges. 2nd ed. Bellingham: SPIE Press, 2004. 3–50

    Book  Google Scholar 

  80. Carpi F, Smela E. Biomedical Applications of Electroactive Polymer Actuators. Hoboken: John Wiley & Sons, 2009

    Book  Google Scholar 

  81. Liu L W, Li J R, Lv X F, et al. Progress in constitutive theory and stability research of electroactive dielectric elastomers (in Chinese). Sci Sin Tech, 2015, 45: 450–463

    Google Scholar 

  82. Lampani L. Finite element modeling of dielectric elastomer actuators for space applications. Dissertation for Ph.D. Degree. Rome: Sapienza University of Rome, 2010

    Google Scholar 

  83. Shintake J. Functional soft robotic actuators based on dielectric elastomers. Dissertation for Ph.D. Degree. Lausanne: É cole Polytechnique Fédérale de Lausanne, 2016

    Google Scholar 

  84. Bhandari B, Lee G Y, Ahn S H. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int J Precis Eng Man, 2012, 13: 141–163

    Article  Google Scholar 

  85. Jo C, Pugal D, Oh I K, et al. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog Polym Sci, 2013, 38: 1037–1066

    Article  Google Scholar 

  86. Punning A, Kim K J, Palmre V, et al. Ionic electroactive polymer artificial muscles in space applications. Sci Reports, 2014, 4: 6913

    Article  Google Scholar 

  87. Giorelli M, Renda F, Ferri G, et al. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013. 5033–5039

    Google Scholar 

  88. Follador M, Cianchetti M, Arienti A, et al. A general method for the design and fabrication of shape memory alloy active spring actuators. Smart Mater Struct, 2012, 21: 115029

    Article  Google Scholar 

  89. Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. Eur J Mech Environ Eng, 2002, 47: 11–21

    Google Scholar 

  90. Boblan I, Bannasch R, Schwenk H, et al. A human-like robot hand and arm with fluidic muscles: biologically inspired construction and functionality. In: Embodied Artificial Intelligence. Dagstuhl Castle: Springer, 2004. 160–179

    Chapter  Google Scholar 

  91. Marchese A D, Katzschmann R K, Rus D. A recipe for soft fluidic elastomer robots. Soft Robot, 2015, 2: 7–25

    Article  Google Scholar 

  92. Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater, 2014, 24: 2163–2170

    Article  Google Scholar 

  93. Jones B A, Walker I D. Kinematics for multisection continuum robots. IEEE Trans Robot, 2006, 22: 43–55

    Article  Google Scholar 

  94. Hannan M W, Walker I D. Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J Robot Syst, 2003, 20: 45–63

    Article  MATH  Google Scholar 

  95. Xiao J, Vatcha R. Real-time adaptive motion planning for a continuum manipulator. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, 2010. 5919–5926

    Google Scholar 

  96. Giorelli M, Renda F, Calisti M, et al. A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), St. Paul, 2012. 3819–3824

    Google Scholar 

  97. Gravagne I A, Rahn C D, Walker I D. Large deflection dynamics and control for planar continuum robots. IEEE Asme Trans Mechatron, 2003, 8: 299–307

    Article  Google Scholar 

  98. Chirikjian G S. Hyper-redundant manipulator dynamics: a continuum approximation. Adv Robot, 1994, 9: 217–243

    Article  Google Scholar 

  99. Gravagne I A, Walker I D. Uniform regulation of a multi-section continuum manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Washington, 2002. 2: 1519–1524

    Google Scholar 

  100. Yekutieli Y, Sagiv-Zohar R, Aharonov R, et al. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. J Neurophysiol, 2005, 94: 1443–1458

    Article  Google Scholar 

  101. Yekutieli Y, Sagiv-Zohar R, Hochner B, et al. Dynamic model of the octopus arm. II. Control of reaching movements. J Neurophy, 2005, 94: 1459–1468

    Article  Google Scholar 

  102. Tatlicioglu E, Walker I D, Dawson D M. Dynamic modelling for planar extensible continuum robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Roma, 2007. 1357–1362

    Google Scholar 

  103. Braganza D, Dawson D M, Walker I D, et al. A neural network controller for continuum robots. IEEE Trans Robot, 2007, 23: 1270–1277

    Article  Google Scholar 

  104. Marchese A D, Tedrake R, Rus D. Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. Int J Robot Res, 2016, 35: 1000–1019

    Article  Google Scholar 

  105. Pfeifer R, Bongard J. How the Body Shapes the Way We Think: a New View of Intelligence. London: MIT Press, 2006

    Google Scholar 

  106. Yun X, Jing Z L, Xiao G, et al. A compressive tracking based on time-space Kalman fusion model. Sci China Inf Sci, 2016, 59: 012106

    Article  Google Scholar 

  107. Liu H, Guo D, Sun F. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas, 2016, 65: 656–665

    Article  Google Scholar 

  108. Jing Z L, Pan H, Qin Y Y. Current progress of information fusion in China. Chin Sci Bull, 2013, 58: 4533–4540

    Article  Google Scholar 

  109. Bar-Cohen Y, Leary S, Yavrouian A, et al. Challenges to the transition of IPMC artificial muscle actuators to practical application. In: Proceedings of Materials Research Society (MRS) Symposium, Boston, 1999. 31295

    Google Scholar 

  110. Bar-Cohen Y, Xue T, Shahinpoor M, et al. Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand. In: Proceedings of the 3rd Conference and Exposition/Demonstration on Robotics for Challenging Environments, Albuquerque, 1998. 15–21

    Google Scholar 

  111. Tadokoro S, Fukuhara M, Bar-Cohen Y, et al. CAE approach in application of Nafion-Pt composite (ICPF) actuators: analysis for surface wipers of NASA MUSES-CN nanorovers. In: Proceedings of SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, 2000. 262–272

    Google Scholar 

  112. van Griethuijsen L I, Trimmer B A. Kinematics of horizontal and vertical caterpillar crawling. J Exp Biol, 2009, 212: 1455–1462

    Article  Google Scholar 

  113. Lobontiu N, Goldfarb M, Garcia E. A piezoelectric-driven inchworm locomotion device. Mech Mach Theory, 2001, 36: 425–443

    Article  MATH  Google Scholar 

  114. Kim M S, Chu W S, Lee J H, et al. Manufacturing of inchworm robot using shape memory alloy (SMA) embedded composite structure. Int J Precis Eng Man, 2011, 12: 565–568

    Article  Google Scholar 

  115. Wang W, Lee J Y, Rodrigue H, et al. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir Biomim, 2014, 9: 046006

    Article  Google Scholar 

  116. Lee H S, Tomizuka M. Robust motion controller design for high-accuracy positioning systems. IEEE Trans Ind Electron, 1996, 43: 48–55

    Article  Google Scholar 

  117. Wang C, Zheng M, Wang Z, et al. Robust two-degree-of-freedom iterative learning control for flexibility compensation of industrial robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, Stockholm, 2016. 2381–2386

    Google Scholar 

  118. Chen W, Tomizuka M. Direct joint space state estimation in robots with multiple elastic joints. IEEE Asme Trans Mechatron, 2014, 19: 697–706

    Article  Google Scholar 

  119. Chen W J, Tomizuka M. Dual-stage iterative learning control for mimo mismatched system with application to robots with joint elasticity. IEEE Trans Contr Syst Tech, 2014, 22: 1350–1361

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by National Natural Science Foundation of China (Grant Nos. 61673262, 60775022, 61603249), and Key Project of Shanghai Municipal Science and Technology Commission (Grant No. 16JC1401100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongliang Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Z., Qiao, L., Pan, H. et al. An overview of the configuration and manipulation of soft robotics for on-orbit servicing. Sci. China Inf. Sci. 60, 050201 (2017). https://doi.org/10.1007/s11432-016-9033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9033-0

Keywords

Navigation