Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An overview of the configuration and manipulation of soft robotics for on-orbit servicing

Abstract

Soft robots refer to robots that are softer and more flexible when compared with conventional rigid-bodied robots. Soft robots are adapted to unstructured environments due to their flexibility, deformability and energy-absorbing properties. Thus, they have tremendous application prospects in on-orbit servicing (OOS). This study discusses the configuration and manipulation of soft robotics. Usually, learning from living beings is used to develop the configurations of most soft robots. In this study, typical soft robots are introduced based on what they mimic. The discussion of manipulation is divided into two parts, namely actuation and control. The study also involves describing and comparing several types of actuations. Studies on the control of soft robots are also reviewed. In this study, potential application of soft robotics for on-orbit servicing is analyzed. A hybrid configuration and manipulation of space soft robots for future research are proposed based on the current development of soft robotics, and some challenges are discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Long A, Richards M, Hastings D E. On-orbit servicing: a new value proposition for satellite design and operation. J Spacecraft Rockets, 2007, 44: 964–976

  2. 2

    Larouche B P, Zhu G Z H. Investigation of impedance controller for autonomous on-orbit servicing robot. Can Aeronaut Space J, 2013, 59: 15–24

  3. 3

    Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Prog Aerosp Sci, 2014, 68: 1–26

  4. 4

    Sallaberger C, Force S P T, Agency C S. Canadian space robotic activities. Acta Astronaut, 1997, 41: 239–246

  5. 5

    Kasai T, Oda M, Suzuki T. Results of the ETS-7 Mission-Rendezvous docking and space robotics experiments. In: Proceedings of Artificial Intelligence, Robotics and Automation in Space, Noordwijk, 1999. 440: 299

  6. 6

    Friend R B. Orbital express program summary and mission overview. In: Proceedings of SPIE Defense and Security Symposium, Orlando, 2008. 695803

  7. 7

    Yong L, Nan Y J, Wang Y Z, et al. Multi-objective optimal preliminary planning of multi-debris active removal mission in LEO. Sci China Inf Sci, in press. doi: 10.1007/s11432-016-0566-7

  8. 8

    Sabatini M, Gasbarri P, Monti R, et al. Vibration control of a flexible space manipulator during on orbit operations. Acta Astronaut, 2012, 73: 109–121

  9. 9

    Abiko S, Yoshida K. An adaptive control of a space manipulator for vibration suppression. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 2005. 2167–2172

  10. 10

    Ma O, Wang J. Model order reduction for impact-contact dynamics simulations of flexible manipulators. Robotica, 2007, 25: 397–407

  11. 11

    Cao Y, Shang J, Liang K, et al. Review of soft-bodied robots. Chinese J Mech Eng, 2012, 48: 25–33

  12. 12

    Trivedi D, Rahn C D, Kier W M, et al. Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech, 2008, 5: 99–117

  13. 13

    Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol, 2013, 31: 287–294

  14. 14

    Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521: 467–475

  15. 15

    Lin H T, Leisk G G, Trimmer B A. Soft robots in space: a perspective for soft robotics. Acta Futura, 2013, 6: 69–79

  16. 16

    Mehling J S, Diftler M A, Chu M, et al. A minimally invasive tendril robot for in-space inspection. In: Proceedings of International Conference on Biomedical Robotics and Biomechatronics (BioRob), Pisa, 2006. 690–695

  17. 17

    Trivedi D, Lotfi A, Rahn C D. Geometrically exact models for soft robotic manipulators. IEEE Trans Robot, 2008, 24: 773–780

  18. 18

    Cianchetti M, Arienti A, Follador M, et al. Design concept and validation of a robotic arm inspired by the octopus. Mater Sci Eng C, 2011, 31: 1230–1239

  19. 19

    Webster III R J, Romano J M, Cowan N J. Mechanics of precurved-tube continuum robots. IEEE Trans Robot, 2009, 25: 67–78

  20. 20

    Walker I D. Robot strings: long, thin continuum robots. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2013. 1–12

  21. 21

    Grissom M D, Chitrakaran V, Dienno D, et al. Design and experimental testing of the OctArm soft robot manipulator. In: Proceedings of SPIE Defense and Security Symposium, Orlando, 2006. 62301F

  22. 22

    Jones B A, Walker I D. Limiting-case analysis of continuum trunk kinematics. In: Proceedings of IEEE International Conference on Robotics and Automation, Roma, 2007. 1363–1368

  23. 23

    Gravagne I A, Walker I D. Manipulability, force, and compliance analysis for planar continuum manipulators. IEEE Trans Robotic Autom, 2002, 18: 263–273

  24. 24

    Jones B A, Walker I D. Practical kinematics for real-time implementation of continuum robots. IEEE Trans Robot, 2006, 22: 1087–1099

  25. 25

    Lu Y K, Xu M, Wu Y H, et al. System simulation of snake travelling. Optics Precis Eng, 2001, 9: 542–547

  26. 26

    Rosenthal M, Pei Q. Multiple-degrees-of-freedom roll actuators. In: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Amsterdam: Elsevier, 2011. 91–102

  27. 27

    Li C, Rahn C D. Design of continuous backbone, cable-driven robots. J Mech Design, 2002, 124: 265–271

  28. 28

    Marchese A D, Komorowski K, Onal C D, et al. Design and control of a soft and continuously deformable 2D robotic manipulation system. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014. 2189–2196

  29. 29

    Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspir Biomim, 2012, 7: 025004

  30. 30

    Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir Biomim, 2012, 7: 025005

  31. 31

    Laschi C, Mazzolai B, Mattoli V, et al. Design of a biomimetic robotic octopus arm. Bioinspir Biomim, 2009, 4: 015006

  32. 32

    Hou J, Bonser R H C, Jeronimidis G. Design of a biomimetic skin for an octopus-inspired robot-part I: characterising octopus skin. J Bionic Eng, 2011, 8: 288–296

  33. 33

    Hou J, Bonser R H C, Jeronimidis G. Design of a biomimetic skin for an octopus-inspired robot-part II: development of the skin artefact. J Bionic Eng, 2011, 8: 297–304

  34. 34

    Calisti M, Giorelli M, Levy G, et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir Biomim, 2011, 6: 036002

  35. 35

    Laschi C, Mazzolai B, Mattoli V, et al. Design and development of a soft actuator for a robot inspired by the octopus arm. In: Proceedings of the 11th International Symposium of Experimental Robotics, Athens, 2008. 25–33

  36. 36

    Nakajima K, Hauser H, Kang R, et al. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front Comput Neuro, 2013, 7: 91

  37. 37

    Calisti M, Arienti A, Giannaccini M E, et al. Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform In: Proceedings of the 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, 2010. 461–466

  38. 38

    Cianchetti M, Follador M, Mazzolai B, et al. Design and development of a soft robotic octopus arm exploiting embodied intelligence. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), St Paul, 2012. 5271–5276

  39. 39

    Simaan N. Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization. In: Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, 2005. 3012–3017

  40. 40

    Xu K, Simaan N. An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot, 2008, 24: 576–587

  41. 41

    Choi D G, Yi B J, Kim W K. Design of a spring backbone micro endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007. 1815–1821

  42. 42

    Peirs J, van Brussel H, Reynaerts D, et al. A flexible distal tip with two degrees of freedom for enhanced dexterity in endoscopic robot surgery. In: Proceedings of the 13th Micromechanics Europe Workshop, Sinaia, 2002. 271–274

  43. 43

    Camarillo D B, Milne C F, Carlson C R, et al. Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Robot, 2008, 24: 1262–1273

  44. 44

    Camarillo D B, Carlson C R, Salisbury J K. Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Trans Robot, 2009, 25: 798–808

  45. 45

    Hu H Y, Wang P F, Sun L N, et al. Kinematic analysis and simulation for cable-driven continuum robot. J Mech Eng, 2010, 19: 1–8

  46. 46

    Sokolowski W, Metcalfe A, Hayashi S, et al. Medical applications of shape memory polymers. Biomed Mater, 2007, 2: 23–27

  47. 47

    Th S W, Singhal P, Wilson T S, et al. Biomedical applications of thermally activated shape memory polymers. J Mater Chem, 2010, 20: 3356–3366

  48. 48

    Chen G, Pham M T, Redarce T. Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Robot Auton Syst, 2009, 57: 712–722

  49. 49

    Rucker D C, Webster R J. Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation. IEEE Trans Bio-Med Eng, 2009, 56: 2308–2311

  50. 50

    Robinson G, Davies J B C. Continuum robots-a state of the art. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation (ICRA), Detroit, 1999. 4: 2849–2854

  51. 51

    Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists. Angewandte Chemie, 2011, 123: 1930–1935

  52. 52

    Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation. Appl Phys Lett, 2007, 90: 081916

  53. 53

    Araromi O A, Gavrilovich I, Shintake J, et al. Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE Asme Trans Mechatron, 2015, 20: 438–446

  54. 54

    Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv Mater, 2016, 28: 231–238

  55. 55

    Suzumori K, Iikura S, Tanaka H. Applying a flexible microactuator to robotic mechanisms. IEEE Control Syst, 1992, 12: 21–27

  56. 56

    Li A, Yang K, Gu C. A flexible robot hand with embedded SMA actuators. Electric Mach Control, 2006, 10: 238–241

  57. 57

    Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res, 2016, 35: 161–185

  58. 58

    Steltz E, Mozeika A, Rodenberg N, et al. Jsel: jamming skin enabled locomotion. In: Prcoeedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009. 5672–5677

  59. 59

    Brown E, Rodenberg N, Amend J, et al. Universal robotic gripper based on the jamming of granular material. Natl Acad Sci, 2010, 107: 18809–18814

  60. 60

    Anderson I A, Gisby T A, McKay T G, et al. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys, 2012, 112: 041101

  61. 61

    Kofod G, Paajanen M, Bauer S. Self-organized minimum-energy structures for dielectric elastomer actuators. Appl Phys A, 2006, 85: 141–143

  62. 62

    Mangan E V, Kingsley D A, Quinn R D, et al. Development of a peristaltic endoscope. In: Proeedings of IEEE International Conference on Robotics and Automation (ICRA), Washington, 2002. 347–352

  63. 63

    Menciassi A, Gorini S, Pernorio G, et al. A SMA actuated artificial earthworm. In: Proeedings of IEEE International Conference on Robotics and Automation (ICRA), New Orleans, 2004. 4: 3282–3287

  64. 64

    Yuk H, Kim D, Lee H, et al. Shape memory alloy-based small crawling robots inspired by C. elegans. Bioinspir Biomim, 2011, 6: 046002

  65. 65

    Boxerbaum A S, Chiel H J, Quinn R D. Softworm: a soft, biologically inspired worm-like robot. In: Proceedings of Neuroscience Abstracts, Chicago, 2009. 315: 44106

  66. 66

    Seok S, Onal C D, Wood R, et al. Peristaltic locomotion with antagonistic actuators in soft robotics. In: Proeedings of IEEE International Conference on Robotics and Automation (ICRA), Anchorage, 2010. 1228–1233

  67. 67

    Kim S, Hawkes E, Choy K, et al. Micro artificial muscle fiber using NiTi spring for soft robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009. 2228–2234

  68. 68

    Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot. Natl Acad Sci, 2011, 108: 20400–20403

  69. 69

    Godage I S, Nanayakkara T, Caldwell D G. Locomotion with continuum limbs. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012. 293–298

  70. 70

    Onal C D, Rus D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir Biomim, 2013, 8: 026003

  71. 71

    Koh J S, Cho K J. Omega-shaped inchworm-inspired crawling robot with large-index-and-pitch (LIP) SMA spring actuators. IEEE Asme Trans Mechatron, 2013, 18: 419–429

  72. 72

    Saunders F, Trimmer B A, Rife J. Modeling locomotion of a soft-bodied arthropod using inverse dynamics. Bioinspir Biomim, 2010, 6: 016001

  73. 73

    Lin H T, Leisk G G, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim, 2011, 6: 026007

  74. 74

    Morin S A, Shepherd R F, Kwok S W, et al. Camouflage and display for soft machines. Science, 2012, 337: 828–832

  75. 75

    Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot. Angew Chem Int Edit, 2013, 52: 2892–2896

  76. 76

    Otake M, Kagami Y, Kuniyoshi Y, et al. Inverse dynamics of gel robots made of electro-active polymer gel. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Taipei, 2003. 2: 2299–2304

  77. 77

    Pei Q, Rosenthal M, Stanford S, et al. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mater Struct, 2004, 13: N86

  78. 78

    Shi L, Guo S, Li M, et al. A novel soft biomimetic microrobot with two motion attitudes. Sensors, 2012, 12: 16732–16758

  79. 79

    Bar-Cohen Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges. 2nd ed. Bellingham: SPIE Press, 2004. 3–50

  80. 80

    Carpi F, Smela E. Biomedical Applications of Electroactive Polymer Actuators. Hoboken: John Wiley & Sons, 2009

  81. 81

    Liu L W, Li J R, Lv X F, et al. Progress in constitutive theory and stability research of electroactive dielectric elastomers (in Chinese). Sci Sin Tech, 2015, 45: 450–463

  82. 82

    Lampani L. Finite element modeling of dielectric elastomer actuators for space applications. Dissertation for Ph.D. Degree. Rome: Sapienza University of Rome, 2010

  83. 83

    Shintake J. Functional soft robotic actuators based on dielectric elastomers. Dissertation for Ph.D. Degree. Lausanne: É cole Polytechnique Fédérale de Lausanne, 2016

  84. 84

    Bhandari B, Lee G Y, Ahn S H. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int J Precis Eng Man, 2012, 13: 141–163

  85. 85

    Jo C, Pugal D, Oh I K, et al. Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog Polym Sci, 2013, 38: 1037–1066

  86. 86

    Punning A, Kim K J, Palmre V, et al. Ionic electroactive polymer artificial muscles in space applications. Sci Reports, 2014, 4: 6913

  87. 87

    Giorelli M, Renda F, Ferri G, et al. A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 2013. 5033–5039

  88. 88

    Follador M, Cianchetti M, Arienti A, et al. A general method for the design and fabrication of shape memory alloy active spring actuators. Smart Mater Struct, 2012, 21: 115029

  89. 89

    Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. Eur J Mech Environ Eng, 2002, 47: 11–21

  90. 90

    Boblan I, Bannasch R, Schwenk H, et al. A human-like robot hand and arm with fluidic muscles: biologically inspired construction and functionality. In: Embodied Artificial Intelligence. Dagstuhl Castle: Springer, 2004. 160–179

  91. 91

    Marchese A D, Katzschmann R K, Rus D. A recipe for soft fluidic elastomer robots. Soft Robot, 2015, 2: 7–25

  92. 92

    Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater, 2014, 24: 2163–2170

  93. 93

    Jones B A, Walker I D. Kinematics for multisection continuum robots. IEEE Trans Robot, 2006, 22: 43–55

  94. 94

    Hannan M W, Walker I D. Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J Robot Syst, 2003, 20: 45–63

  95. 95

    Xiao J, Vatcha R. Real-time adaptive motion planning for a continuum manipulator. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, 2010. 5919–5926

  96. 96

    Giorelli M, Renda F, Calisti M, et al. A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), St. Paul, 2012. 3819–3824

  97. 97

    Gravagne I A, Rahn C D, Walker I D. Large deflection dynamics and control for planar continuum robots. IEEE Asme Trans Mechatron, 2003, 8: 299–307

  98. 98

    Chirikjian G S. Hyper-redundant manipulator dynamics: a continuum approximation. Adv Robot, 1994, 9: 217–243

  99. 99

    Gravagne I A, Walker I D. Uniform regulation of a multi-section continuum manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Washington, 2002. 2: 1519–1524

  100. 100

    Yekutieli Y, Sagiv-Zohar R, Aharonov R, et al. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. J Neurophysiol, 2005, 94: 1443–1458

  101. 101

    Yekutieli Y, Sagiv-Zohar R, Hochner B, et al. Dynamic model of the octopus arm. II. Control of reaching movements. J Neurophy, 2005, 94: 1459–1468

  102. 102

    Tatlicioglu E, Walker I D, Dawson D M. Dynamic modelling for planar extensible continuum robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Roma, 2007. 1357–1362

  103. 103

    Braganza D, Dawson D M, Walker I D, et al. A neural network controller for continuum robots. IEEE Trans Robot, 2007, 23: 1270–1277

  104. 104

    Marchese A D, Tedrake R, Rus D. Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. Int J Robot Res, 2016, 35: 1000–1019

  105. 105

    Pfeifer R, Bongard J. How the Body Shapes the Way We Think: a New View of Intelligence. London: MIT Press, 2006

  106. 106

    Yun X, Jing Z L, Xiao G, et al. A compressive tracking based on time-space Kalman fusion model. Sci China Inf Sci, 2016, 59: 012106

  107. 107

    Liu H, Guo D, Sun F. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas, 2016, 65: 656–665

  108. 108

    Jing Z L, Pan H, Qin Y Y. Current progress of information fusion in China. Chin Sci Bull, 2013, 58: 4533–4540

  109. 109

    Bar-Cohen Y, Leary S, Yavrouian A, et al. Challenges to the transition of IPMC artificial muscle actuators to practical application. In: Proceedings of Materials Research Society (MRS) Symposium, Boston, 1999. 31295

  110. 110

    Bar-Cohen Y, Xue T, Shahinpoor M, et al. Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand. In: Proceedings of the 3rd Conference and Exposition/Demonstration on Robotics for Challenging Environments, Albuquerque, 1998. 15–21

  111. 111

    Tadokoro S, Fukuhara M, Bar-Cohen Y, et al. CAE approach in application of Nafion-Pt composite (ICPF) actuators: analysis for surface wipers of NASA MUSES-CN nanorovers. In: Proceedings of SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, 2000. 262–272

  112. 112

    van Griethuijsen L I, Trimmer B A. Kinematics of horizontal and vertical caterpillar crawling. J Exp Biol, 2009, 212: 1455–1462

  113. 113

    Lobontiu N, Goldfarb M, Garcia E. A piezoelectric-driven inchworm locomotion device. Mech Mach Theory, 2001, 36: 425–443

  114. 114

    Kim M S, Chu W S, Lee J H, et al. Manufacturing of inchworm robot using shape memory alloy (SMA) embedded composite structure. Int J Precis Eng Man, 2011, 12: 565–568

  115. 115

    Wang W, Lee J Y, Rodrigue H, et al. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir Biomim, 2014, 9: 046006

  116. 116

    Lee H S, Tomizuka M. Robust motion controller design for high-accuracy positioning systems. IEEE Trans Ind Electron, 1996, 43: 48–55

  117. 117

    Wang C, Zheng M, Wang Z, et al. Robust two-degree-of-freedom iterative learning control for flexibility compensation of industrial robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, Stockholm, 2016. 2381–2386

  118. 118

    Chen W, Tomizuka M. Direct joint space state estimation in robots with multiple elastic joints. IEEE Asme Trans Mechatron, 2014, 19: 697–706

  119. 119

    Chen W J, Tomizuka M. Dual-stage iterative learning control for mimo mismatched system with application to robots with joint elasticity. IEEE Trans Contr Syst Tech, 2014, 22: 1350–1361

Download references

Acknowledgements

This work was jointly supported by National Natural Science Foundation of China (Grant Nos. 61673262, 60775022, 61603249), and Key Project of Shanghai Municipal Science and Technology Commission (Grant No. 16JC1401100).

Author information

Correspondence to Zhongliang Jing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jing, Z., Qiao, L., Pan, H. et al. An overview of the configuration and manipulation of soft robotics for on-orbit servicing. Sci. China Inf. Sci. 60, 050201 (2017). https://doi.org/10.1007/s11432-016-9033-0

Download citation

Keywords

  • soft robot
  • on-orbit servicing
  • biological inspiration
  • configuration
  • manipulation