Equivalent system model for the calibration of polarimetric SAR under Faraday rotation conditions

Abstract

An equivalent system model (ESM) that can be used to calibrate a SAR system affected by both the effect of system errors and the Faraday rotation (FR) is proposed. This ESM contains only system-distortion-like parameters but includes a distortion matrix (DM) that is identical to the original, which contains the effects of both the system errors and the Faraday rotation angle (FRA). With this model, the conventional distributed-target-based (DT-based) algorithms which have not taken FR effect into account are readily applicable. The conditions on FRA for the successful application of DT-based algorithms are studied, and the results suggest that reliable estimates can be obtained for a well-designed system whose true system crosstalk level is lower than −20 dB provided that the mean FRA at the calibration site is within ±15° and that the FRA can be suitably modeled as Gaussian. Thus, the requirements on the crosstalk level or the FRA that are commonly employed in other calibration methods designed for data affected by FR are relaxed.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Rignot E J, Zimmermann R, van Zyl J J. Spaceborne applications of P-band imaging radars for measuring forest biomass. IEEE Trans Geosci Remote Sens, 1995, 33: 1162–1169

    Article  Google Scholar 

  2. 2

    Lopez-Sanchez J M, Hajnsek I, Ballester-Berman J D. First demonstration of agriculture height retrieval with PolInSAR airborne data. IEEE Geosci Remote Sens Lett, 2012, 9: 242–246

    Article  Google Scholar 

  3. 3

    Guo S L, Li Y, Hong W, et al. Model-based target decomposition with the π/4 mode compact polarimetry data. Sci China Inf Sci, 2016, 59: 062307

    Article  Google Scholar 

  4. 4

    Freeman A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation. IEEE Trans Geosci Remote Sens, 2004, 42: 1617–1624

    Article  Google Scholar 

  5. 5

    Touzi R, Shimada M. Polarimetric PALSAR calibration. IEEE Trans Geosci Remote Sens, 2009, 47: 3951–3959

    Article  Google Scholar 

  6. 6

    Kimura H. Calibration of polarimetric PALSAR imagery affected by Faraday rotation using polarization orientation. IEEE Trans Geosci Remote Sens, 2009, 47: 3943–3950

    Article  Google Scholar 

  7. 7

    Villa A, Iannini L, Giudici D, et al. Calibration of SAR polarimetric images by means of a covariance matching approach. IEEE Trans Geosci Remote Sens, 2015, 53: 674–686

    Article  Google Scholar 

  8. 8

    van Zyl J J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses. IEEE Trans Geosci Remote Sens, 1990, 28: 337–348

    Article  Google Scholar 

  9. 9

    Freeman A, van Zyl J J, Klein J D, et al. Calibration of stokes and scattering matrix format polarimetric SAR data. IEEE Trans Geosci Remote Sens, 1992, 30: 531–539

    Article  Google Scholar 

  10. 10

    Klein J D. Calibration of complex polarimetric SAR imagery using backscatter correlations. IEEE Trans Aerosp Electron Syst, 1992, 28: 183–194

    Article  Google Scholar 

  11. 11

    Touzi R, Livingstone C E, Lafontaine J R C, et al. Consideration of antenna gain and phase patterns for calibration of polarimetric SAR data. IEEE Trans Geosci Remote Sens, 1993, 31: 1132–1145

    Article  Google Scholar 

  12. 12

    Quegan S. A unified algorithm for phase and cross-talk calibration of polarimetric data — theory and observations. IEEE Trans Geosci Remote Sens, 1994, 32: 89–99

    Article  Google Scholar 

  13. 13

    Ainsworth T L, Ferro-Famil L, Lee Jong-Sen. Orientation angle preserving a posteriori polarimetric SAR calibration. IEEE Trans Geosci Remote Sens, 2006, 44: 994–1003

    Article  Google Scholar 

  14. 14

    Goh A, Preiss M, Gray D, et al. Comparison of parameter estimation accuracy of distributed-target polarimetric calibration techniques. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007. 4175–4178

    Google Scholar 

  15. 15

    Zhang H, Lu W, Zhang B, et al. Improvement of polarimetric SAR calibration based on the Ainsworth algorithm for Chinese airborne PolSAR data. IEEE Geosci Remote Sens Lett, 2013, 10: 898–902

    Article  Google Scholar 

  16. 16

    Meyer F J, Nicoll J B. Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data. IEEE Trans Geosci Remote Sens, 2008, 46: 3076–3086

    Article  Google Scholar 

  17. 17

    Gail W. A simplified calibration technique for polarimetric radars. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Tokyo, 1993. 2: 377–379

    Google Scholar 

  18. 18

    Freeman A, Saatchi S S. On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures. IEEE Trans Geosci Remote Sens, 2004, 42: 1607–1616

    Article  Google Scholar 

  19. 19

    Wright P A, Quegan S, Wheadon N S, et al. Faraday rotation effects on L-band spaceborne SAR data. IEEE Trans Geosci Remote Sens, 2003, 41: 2735–2744

    Article  Google Scholar 

  20. 20

    Sandberg G, Eriksson L E B, Ulander L M H. Measurements of Faraday rotation using polarimetric PALSAR images. IEEE Geosci Remote Sens Lett, 2009, 6: 142–146

    Article  Google Scholar 

  21. 21

    Wright P, Meadows P, Mack G, et al. Aden ALOS-PALSAR product verification. In: Proceedings of European Space Agency Special Publication (ESA SP), Rhodes, 2008. 664

    Google Scholar 

  22. 22

    Lavalle M, Solimini D, Pottier E, et al. Faraday rotation estimation from unfocussed raw data: analysis using ALOSPALSAR data. In: Proceedings of European Space Agency Special Publication (ESA SP), Frascati, 2009. 668

    Google Scholar 

  23. 23

    Bickel S H, Bates R H T. Effects of magneto-ionic propagation on the polarization scattering matrix. Proc IEEE, 1965, 53: 1089–1091

    Article  Google Scholar 

  24. 24

    Wang Y T, Ainsworth T L, Lee J-S. Assessment of system polarization quality for polarimetric SAR imagery and target decomposition. IEEE Trans Geosci Remote Sens, 2011, 49: 1755–1771

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by State Key Program of National Natural Science of China (Grant No. 61430118).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen Hong.

Additional information

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hong, W. Equivalent system model for the calibration of polarimetric SAR under Faraday rotation conditions. Sci. China Inf. Sci. 61, 022301 (2018). https://doi.org/10.1007/s11432-016-9032-6

Download citation

Keywords

  • calibration
  • Faraday rotation (FR)
  • polarimetry
  • distibuted target (DT)
  • synthetic aperture radar (SAR)