Advertisement

Equivalent system model for the calibration of polarimetric SAR under Faraday rotation conditions

  • Jingjing Zhang
  • Wen Hong
Research Paper

Abstract

An equivalent system model (ESM) that can be used to calibrate a SAR system affected by both the effect of system errors and the Faraday rotation (FR) is proposed. This ESM contains only system-distortion-like parameters but includes a distortion matrix (DM) that is identical to the original, which contains the effects of both the system errors and the Faraday rotation angle (FRA). With this model, the conventional distributed-target-based (DT-based) algorithms which have not taken FR effect into account are readily applicable. The conditions on FRA for the successful application of DT-based algorithms are studied, and the results suggest that reliable estimates can be obtained for a well-designed system whose true system crosstalk level is lower than −20 dB provided that the mean FRA at the calibration site is within ±15° and that the FRA can be suitably modeled as Gaussian. Thus, the requirements on the crosstalk level or the FRA that are commonly employed in other calibration methods designed for data affected by FR are relaxed.

Keywords

calibration Faraday rotation (FR) polarimetry distibuted target (DT) synthetic aperture radar (SAR) 

Notes

Acknowledgements

This work was supported by State Key Program of National Natural Science of China (Grant No. 61430118).

References

  1. 1.
    Rignot E J, Zimmermann R, van Zyl J J. Spaceborne applications of P-band imaging radars for measuring forest biomass. IEEE Trans Geosci Remote Sens, 1995, 33: 1162–1169CrossRefGoogle Scholar
  2. 2.
    Lopez-Sanchez J M, Hajnsek I, Ballester-Berman J D. First demonstration of agriculture height retrieval with PolInSAR airborne data. IEEE Geosci Remote Sens Lett, 2012, 9: 242–246CrossRefGoogle Scholar
  3. 3.
    Guo S L, Li Y, Hong W, et al. Model-based target decomposition with the π/4 mode compact polarimetry data. Sci China Inf Sci, 2016, 59: 062307CrossRefGoogle Scholar
  4. 4.
    Freeman A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation. IEEE Trans Geosci Remote Sens, 2004, 42: 1617–1624CrossRefGoogle Scholar
  5. 5.
    Touzi R, Shimada M. Polarimetric PALSAR calibration. IEEE Trans Geosci Remote Sens, 2009, 47: 3951–3959CrossRefGoogle Scholar
  6. 6.
    Kimura H. Calibration of polarimetric PALSAR imagery affected by Faraday rotation using polarization orientation. IEEE Trans Geosci Remote Sens, 2009, 47: 3943–3950CrossRefGoogle Scholar
  7. 7.
    Villa A, Iannini L, Giudici D, et al. Calibration of SAR polarimetric images by means of a covariance matching approach. IEEE Trans Geosci Remote Sens, 2015, 53: 674–686CrossRefGoogle Scholar
  8. 8.
    van Zyl J J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses. IEEE Trans Geosci Remote Sens, 1990, 28: 337–348CrossRefGoogle Scholar
  9. 9.
    Freeman A, van Zyl J J, Klein J D, et al. Calibration of stokes and scattering matrix format polarimetric SAR data. IEEE Trans Geosci Remote Sens, 1992, 30: 531–539CrossRefGoogle Scholar
  10. 10.
    Klein J D. Calibration of complex polarimetric SAR imagery using backscatter correlations. IEEE Trans Aerosp Electron Syst, 1992, 28: 183–194CrossRefGoogle Scholar
  11. 11.
    Touzi R, Livingstone C E, Lafontaine J R C, et al. Consideration of antenna gain and phase patterns for calibration of polarimetric SAR data. IEEE Trans Geosci Remote Sens, 1993, 31: 1132–1145CrossRefGoogle Scholar
  12. 12.
    Quegan S. A unified algorithm for phase and cross-talk calibration of polarimetric data — theory and observations. IEEE Trans Geosci Remote Sens, 1994, 32: 89–99CrossRefGoogle Scholar
  13. 13.
    Ainsworth T L, Ferro-Famil L, Lee Jong-Sen. Orientation angle preserving a posteriori polarimetric SAR calibration. IEEE Trans Geosci Remote Sens, 2006, 44: 994–1003CrossRefGoogle Scholar
  14. 14.
    Goh A, Preiss M, Gray D, et al. Comparison of parameter estimation accuracy of distributed-target polarimetric calibration techniques. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007. 4175–4178Google Scholar
  15. 15.
    Zhang H, Lu W, Zhang B, et al. Improvement of polarimetric SAR calibration based on the Ainsworth algorithm for Chinese airborne PolSAR data. IEEE Geosci Remote Sens Lett, 2013, 10: 898–902CrossRefGoogle Scholar
  16. 16.
    Meyer F J, Nicoll J B. Prediction, detection, and correction of Faraday rotation in full-polarimetric L-band SAR data. IEEE Trans Geosci Remote Sens, 2008, 46: 3076–3086CrossRefGoogle Scholar
  17. 17.
    Gail W. A simplified calibration technique for polarimetric radars. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Tokyo, 1993. 2: 377–379Google Scholar
  18. 18.
    Freeman A, Saatchi S S. On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures. IEEE Trans Geosci Remote Sens, 2004, 42: 1607–1616CrossRefGoogle Scholar
  19. 19.
    Wright P A, Quegan S, Wheadon N S, et al. Faraday rotation effects on L-band spaceborne SAR data. IEEE Trans Geosci Remote Sens, 2003, 41: 2735–2744CrossRefGoogle Scholar
  20. 20.
    Sandberg G, Eriksson L E B, Ulander L M H. Measurements of Faraday rotation using polarimetric PALSAR images. IEEE Geosci Remote Sens Lett, 2009, 6: 142–146CrossRefGoogle Scholar
  21. 21.
    Wright P, Meadows P, Mack G, et al. Aden ALOS-PALSAR product verification. In: Proceedings of European Space Agency Special Publication (ESA SP), Rhodes, 2008. 664Google Scholar
  22. 22.
    Lavalle M, Solimini D, Pottier E, et al. Faraday rotation estimation from unfocussed raw data: analysis using ALOSPALSAR data. In: Proceedings of European Space Agency Special Publication (ESA SP), Frascati, 2009. 668Google Scholar
  23. 23.
    Bickel S H, Bates R H T. Effects of magneto-ionic propagation on the polarization scattering matrix. Proc IEEE, 1965, 53: 1089–1091CrossRefGoogle Scholar
  24. 24.
    Wang Y T, Ainsworth T L, Lee J-S. Assessment of system polarization quality for polarimetric SAR imagery and target decomposition. IEEE Trans Geosci Remote Sens, 2011, 49: 1755–1771CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Science and Technology on Microwave Imaging Laboratory, Institute of ElectronicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations