Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Quantifying quantum information resources: a numerical study

  • 86 Accesses

  • 1 Citations


Quantum systems present correlations, which cannot be offered by classical objects. These distinctive correlations are not only considered as fundamental features of quantum mechanics, but more importantly, they are regarded as critical resources for different quantum information tasks. For example, quantum entanglement has been established as the key resource for quantum communication, and quantum discord has been suggested as the resource in deterministic quantum computation with one qubit (DQC1). However, quantification of these resources is very difficult, especially for many-body situations. Here, we introduce a unified numerical method to quantify these resources in general multiqubit states and use it to investigate the robustness of quantum discord in multiqubit permutation-invariant states. Our method paves the way to quantitatively investigate the relation between the potential of quantum technologies and quantum resources, particularly, that between quantum computation and quantum correlations.

This is a preview of subscription content, log in to check access.


  1. 1

    Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

  2. 2

    Barrett J, Hardy L, Kent A. No signaling and quantum key distribution. Phys Rev Lett, 2005, 95: 010503

  3. 3

    Acin A, Brunner N, Gisin N, et al. Device-independent security of quantum cryptography against collective attacks. Phys Rev Lett, 2007, 98: 230501

  4. 4

    Datta A, Shaji A, Caves C M. Quantum discord and the power of one qubit. Phys Rev Lett, 2008, 100: 050502

  5. 5

    Lanyon B P, Barbieri M, Almeida M P, et al. Experimental quantum computing without entanglement. Phys Rev Lett, 2008, 101: 200501

  6. 6

    Ollivier H, Zurek W H. Quantum discord: a measure of the quantumness of correlations. Phys Rev Lett, 2001, 88: 017901

  7. 7

    Bell J S. On the problem of hidden variables in quantum mechanics. Rev Mod Phys, 1966, 38: 447–452

  8. 8

    Kochen S, Specker E P. The problem of hidden variables in quantum mechanics. J Math Mech, 1967, 17: 59–87

  9. 9

    Howard M, Wallman J, Veitch V, et al. Contextuality supplies the ‘magic’ for quantum computation. Nature, 2014, 510: 351–355

  10. 10

    Raussendorf R, Browne D E, Delfosse N, et al. Contextuality and Wigner function negativity in qubit quantum computation. arXiv:1511.08506

  11. 11

    Wootters W K. Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett, 1998, 80: 2245

  12. 12

    Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. Phys Rev A, 1996, 53: 2046–2052

  13. 13

    Bennett C H, Di Vincenzo D P, Smolin J A, et al. Mixed-state entanglement and quantum error correction. Phys Rev A, 1996, 54: 3824–3851

  14. 14

    Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725

  15. 15

    Coffman V, Kundu J, Wootters W K. Distributed entanglement. Phys Rev A, 2000, 61: 052306

  16. 16

    Henderson L, Vedral V. Classical, quantum and total correlations. J Phys A: Math Gen, 2001, 34: 6899–6905

  17. 17

    Okrasa M, Walczak Z. Quantum discord and multipartite correlations. Europhys Lett, 2011, 96: 60003

  18. 18

    Chakrabarty I, Agrawal P, Pati A K. Quantum dissension: generalizing quantum discord for three-qubit states. Eur Phys J D, 2011, 65: 605–612

  19. 19

    Modi K, Paterek T, Son W, et al. Unified view of quantum and classical correlations. Phys Rev Lett, 2010, 104: 080501

  20. 20

    Grudka A, Horodecki K, Horodecki M, et al. Quantifying contextuality. Phys Rev Lett, 2014, 112: 120401

  21. 21

    Gour G, Müller M P, Narasimhachar V, et al. The resource theory of informational nonequilibrium in thermodynamics. Phys Rep, 2015, 583: 1–58

  22. 22

    Hukushima K, Nemoto K. Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn, 1996, 65: 1604–1608

  23. 23

    Marinari E, Parisi G. Simulated tempering: a new Monte Carlo scheme. Europhys Lett, 1992, 19: 451–458

  24. 24

    Geyer C J, Thompson E A. Constrained Monte Carlo maximum likelihood for dependent data. J R Stat Soc Ser B, 1992, 54: 657–699

  25. 25

    Young A P. Spin Glasses and Random Fields. Singapore River Edge: World Scientific, 1998

  26. 26

    Vedral V, Plenio M B, Rippin M A, et al. Quantifying entanglement. Phys Rev Lett, 1997, 78: 2275–2279

  27. 27

    Marinari E, Parisi G, Ruiz-Lorenzo J J. Phase structure of the three-dimensional edwards-anderson spin glass. Phys Rev B, 1998, 58: 14852–14863

  28. 28

    Sugita Y, Kitao A, Okamoto Y. Multidimensional replica-exchange method for free-energy calculations. J Chem Phys, 2000, 113: 6042–6051

  29. 29

    Neirotti J P, Calvo F, Freeman D L, et al. Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble. J Chem Phys, 2000, 112: 10340–10349

  30. 30

    Cao K, Zhou Z W, Guo G C, et al. Efficient numerical method to calculate the three-tangle of mixed states. Phys Rev A, 2010, 81: 034302

  31. 31

    Sasaki G H, Hajek B. The time-complexity of maximum matching by simulated annealing. J ACM, 1988, 35: 387–403

  32. 32

    Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220: 671–680

  33. 33

    Bertsimas D, Tsitsiklis J. Simulated annealing. Stat Sci, 1993, 8: 10–15

  34. 34

    Wang W, Machta J, Katzgraber H G. Comparing Monte Carlo methods for finding ground states of ising spin glasses: population annealing, simulated annealing, and parallel tempering. Phys Rev E, 2015, 92: 013303

  35. 35

    Moreno J J, Katzgraber H G, Hartmann A K. Finding low-temperature states with parallel tempering, simulated annealing and simple Monte Carlo. Int J Mod Phys C, 2003, 14: 285–302

  36. 36

    Earl D J, Deem M W. Parallel tempering: theory, applications, and new perspectives. Phys Chem Chem Phys, 2005, 7: 3910–3916

  37. 37

    Wei T C. Relative entropy of entanglement for multipartite mixed states: permutation-invariant states and dür states. Phys Rev A, 2008, 78: 012327

  38. 38

    Parashar P, Rana S. Entanglement and discord of the superposition of greenberger-horne-zeilinger states. Phys Rev A, 2011, 83: 032301

  39. 39

    Yu T, Eberly J H. Sudden death of entanglement. Science, 2009, 323: 598–601

  40. 40

    Werlang T, Souza S, Fanchini F F, et al. Robustness of quantum discord to sudden death. Phys Rev A, 2009, 80: 024103

Download references


Lixin HE acknowledges the support from Chinese National Fundamental Research Program (Grant No. 2011CB921200), National Natural Science Funds for Distinguished Young Scholars, and the Fundamental Research Funds for the Central Universities (Grant No. WK2470000006).

Author information

Correspondence to Lixin He.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., He, L. Quantifying quantum information resources: a numerical study. Sci. China Inf. Sci. 60, 052501 (2017). https://doi.org/10.1007/s11432-016-9006-6

Download citation


  • quantum
  • quantum information
  • quantum computation
  • entanglement
  • quantum discord
  • numerical algorithm
  • replica exchange Monte Carlo