Improving BDD-based attractor detection for synchronous Boolean networks

Abstract

Boolean networks are an important formalism for modelling biological systems and have attracted much attention in recent years. An important challenge in Boolean networks is to exhaustively find attractors, which represent steady states of a biological network. In this paper, we propose a new approach to improve the efficiency of BDD-based attractor detection. Our approach includes a monolithic algorithm for small networks, an enumerative strategy to deal with large networks, a method to accelerate attractor detection based on an analysis of the network structure, and two heuristics on ordering BDD variables. We demonstrate the performance of our approach on a number of examples and on a realistic model of apoptosis in hepatocytes. We compare it with one existing technique in the literature.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Kauffman S. Homeostasis and differentiation in random genetic control networks. Nature, 1969, 224: 177–178

    Article  Google Scholar 

  2. 2

    Huang S. Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation. Pharmacogenomics, 2001, 2: 203–222

    Article  Google Scholar 

  3. 3

    Needham C J, Manfield I W, Bulpitt A J, et al. From gene expression to gene regulatory networks in Arabidopsis thaliana. BMC Syst Biol, 2009, 3: 85

    Article  Google Scholar 

  4. 4

    Garg A, Xenarios L, Mendoza L, et al. An efficient method for dynamic analysis of gene regulatory networks and in silico gene perturbation experiments. In: Proceedings of 11th Annual Conference on Research in Computational Molecular Biology. Berlin: Springer, 2007. 62–76

    Google Scholar 

  5. 5

    Somogyi R, Greller L D. The dynamics of molecular networks: applications to therapeutic discovery. Drug Discov Today, 2001, 6: 1267–1277

    Article  Google Scholar 

  6. 6

    Raeymaekers L. Dynamics of Boolean networks controlled by biologically meaningful functions. J Theor Biol, 2002, 218: 331–341

    MathSciNet  Article  Google Scholar 

  7. 7

    Irons D J. Improving the efficiency of attractor cycle identification in Boolean networks. Phys D, 2006, 217: 7–21

    MathSciNet  Article  MATH  Google Scholar 

  8. 8

    Dubrova E, Teslenko M, Martinelli A. Kauffman networks: analysis and applications. In: Proceedings of 2005 IEEE/ACM International Conference on Computer-Aided Design. Washington DC: IEEE, 2005. 479–484

    Google Scholar 

  9. 9

    Garg A, Di Cara A, Xenarios L, et al. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics, 2008, 24: 1917–1925

    Article  Google Scholar 

  10. 10

    Zheng D S, Yang G W, Li X Y, et al. An efficient algorithm for computing attractors of synchronous and asynchronous Boolean networks. PLoS ONE, 2013, 8: e60593

    Article  Google Scholar 

  11. 11

    Dubrova E, Teslenko M. A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinf, 2011, 8: 1393–1399

    Article  Google Scholar 

  12. 12

    Zhao Y, Kim J, Filippone M. Aggregation algorithm towards large-scale Boolean network analysis. IEEE Trans Automat Contr, 2013, 58: 1976–1985

    MathSciNet  Article  Google Scholar 

  13. 13

    Guo W S, Yang G W, Wu W, et al. A parallel attractor finding algorithm based on Boolean satisfiability for genetic regulatory networks. PLoS ONE, 2014, 9: e94258

    Article  Google Scholar 

  14. 14

    Kauffman S. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    MathSciNet  Article  Google Scholar 

  15. 15

    Mushthofa M, Torres G, Van de Peer Y, et al. ASP-G: an ASP-based method for finding attractors in genetic regulatory networks. Bioinformatics, 2014, 30: 3086–3092

    Article  Google Scholar 

  16. 16

    Shmulevich I, Edward R D. Probabilistic Boolean Networks: the Modeling and Control of Gene Regulatory Networks. Philadelphia: SIAM Press, 2010

    Google Scholar 

  17. 17

    Lee C. Representation of switching circuits by binary-decision programs. Bell Syst Tech J, 1959, 38: 985–999

    MathSciNet  Article  Google Scholar 

  18. 18

    Akers S B. Binary decision diagrams. IEEE Trans Comput, 1978, 100: 509–516

    Article  MATH  Google Scholar 

  19. 19

    Bollig B, Wegener L. Improving the variable ordering of OBDDs is NP-complete. IEEE Trans Comput, 1996, 45: 993–1002

    Article  MATH  Google Scholar 

  20. 20

    Bryant R E. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput Surv, 1992, 24: 293–318

    Article  Google Scholar 

  21. 21

    Drechsler R. Verification of multi-valued logic networks. In: Proceedings of 26th Symposium on Multiple-Valued Logic. Washington DC: IEEE, 1996. 10–15

    Google Scholar 

  22. 22

    Malik S, Wang A R, Brayton R K, et al. Logic verification using binary decision diagrams in a logic synthesis environment. In: Proceedings of IEEE International Conference on Computer-Aided Design. Washington DC: IEEE, 1988. 6–9

    Google Scholar 

  23. 23

    Lomuscio A, Qu H Y, Raimondi F. MCMAS: an open-source model checker for the verification of multi-agent systems. Int J Softw Tools Technol Transf, 2015, doi: 10.1007/s10009-015-0378-x

    Google Scholar 

  24. 24

    Mizera A, Pang J, Yuan Q X. ASSA-PBN: an approximate steady-state analyser of probabilistic Boolean networks. In: Proceedings of 13th International Symposium on Automated Technology for Verification and Analysis. Berlin: Springer, 2015. 214–220. Software available at http://satoss.uni.lu/software/ASSA-PBN/

    Google Scholar 

  25. 25

    Schlatter R, Schmich K, Vizcarra I A, et al. ON/OFF and beyond—a Boolean model of apoptosis. PLoS Comput Biol, 2009, 5: e1000595

    Article  Google Scholar 

  26. 26

    Trairatphisan P, Mizera A, Pang J, et al. optPBN: an optimisation toolbox for probabilistic Boolean networks. PLoS ONE, 2014, 9: e98001

    Article  Google Scholar 

  27. 27

    Mizera A, Pang J, Yuan Q X. Reviving the two-state Markov chain approach. Technical Report. 2015. Available online at http://arxiv.org/abs/1501.01779

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qixia Yuan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, Q., Qu, H., Pang, J. et al. Improving BDD-based attractor detection for synchronous Boolean networks. Sci. China Inf. Sci. 59, 080101 (2016). https://doi.org/10.1007/s11432-016-5594-9

Download citation

Keywords

  • Boolean networks
  • systems biology
  • binary decision diagram
  • attractor
  • verification algorithms