Underwater sonar target imaging via compressed sensing with M sequences


Due to the low sound propagation speed, the tradeoff between high azimuth resolution and wide imaging swath has severely limited the application of sonar underwater target imaging. However, based on compressed sensing (CS) technique, it is feasible to image targets with merely one pulse and thus avoid the above tradeoff. To investigate the possible waveforms for CS-based underwater imaging, the deterministic M sequences widely used in sonar applications are introduced in this paper. By analyzing the compressive matrix constructed from M sequences, the coherence parameter and the restricted isometry property (RIP) of the matrix are derived. Also, the feasibility and advances of M sequence are demonstrated by being compared with the existing Alltop sequence in underwater CS imaging framework. Finally, the results of numerical simulations and a real experiment are provided to reveal the effectiveness of the proposed signal.

This is a preview of subscription content, access via your institution.


  1. 1

    Gilmour G A. Synthetic Aperture Side-Looking Sonar System. U.S. Patent 4088978, May 1978

    Google Scholar 

  2. 2

    Griffiths H D. Synthetic aperture imaging with sonar and radar: a comparison. In: Proceedings of the 5th World Congress on Ultrasonics, Paris, 2003. 511–518

    Google Scholar 

  3. 3

    Hayes P, Gough T. Synthetic aperture sonar: a review of current status. IEEE J Oceanic Eng, 2009, 34: 207–224

    Article  Google Scholar 

  4. 4

    Franceschetti G, Lanari R. Synthetic Aperture Radar Processing. Boca Raton: CRC Press, 1999

    Google Scholar 

  5. 5

    Cutrona L J. Comparison of sonar system performance achievable using synthetic aperture techniques with the performance achievable with more conventional means. J Acoust Soc America, 1975, 58: 336–348

    Article  Google Scholar 

  6. 6

    Cutrona L J. Additional characteristics of synthetic-aperture sonar systems and a further comparison with nonsynthetic-aperture sonar systems. J Acoust Soc America, 1977, 61: 1213–1217

    Article  Google Scholar 

  7. 7

    Yu M, Xu J, Peng Y. Joint Doppler parameters estimation for squint-looking SAR. IET Radar Sonar Nav, 2007, 1: 207–212

    Article  Google Scholar 

  8. 8

    Sutton T J, Griffiths H D, Hetet A, et al. Experimental validation of algorithms for high-resolution imaging of the seabed using synthetic aperture sonar. IET Radar Sonar Nav, 2003, 150: 78–83

    Article  Google Scholar 

  9. 9

    Donoho D. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289–1306

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489–509

    MathSciNet  Article  MATH  Google Scholar 

  11. 11

    Eldar Y, Kutyniok G. Compressed Sensing: Theory and Applications. New York: Cambridge University Press, 2012

    Google Scholar 

  12. 12

    Yan H C, Xu J, Xia X-G, et al. Wideband underwater sonar imaging via compressed sensing with scaling effect compensation. Sci China Inf Sci, 2015, 58: 020306

    Article  Google Scholar 

  13. 13

    Baraniuk R, Steeghs P. Compressive radar imaging. In: Proceedings of IEEE Radar Conference, Boston, 2007. 128–133

    Google Scholar 

  14. 14

    Alonso T, Lòpez-Dekker P, Mallorqui J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans Geosci Rem Sens, 2010, 48: 4285–4295

    Article  Google Scholar 

  15. 15

    Yan H, Xu J, Peng S, et al. A compressed sensing method for a wider swath in synthetic aperture imaging. In: Proceedings of IET International Radar Conference, Xi’an, 2013. 1–6

    Google Scholar 

  16. 16

    Patel V M, Easley G R, Healy D M, et al. Compressed synthetic aperture radar. IEEE J Sel Top Signal Process, 2010, 4: 244–254

    Article  Google Scholar 

  17. 17

    Zhu X, Bamler R. Tomographic SAR inversion by L1-norm regularization–the compressive sensing approach. IEEE Trans Geosci Rem Sens, 2010, 48: 3839–3846

    Article  Google Scholar 

  18. 18

    Gurbuz A, McClellan J, Scott W. A compressive sensing data acquisition and imaging method for stepped frequency GPRs. IEEE Trans Signal Process, 2009, 57: 2640–2650

    MathSciNet  Article  Google Scholar 

  19. 19

    Li G, Burkholder R J. Hybrid matching pursuit for distributed through-wall radar imaging. IEEE Trans Antennas Propag, 2015, 63: 1701–1711

    MathSciNet  Article  Google Scholar 

  20. 20

    Li G, Varshney P K. Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit. IEEE J Sel Top in Appl Earth Observ and Rem Sens, 2014, 7: 4937–4948

    Article  Google Scholar 

  21. 21

    Herman M, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275–2284

    MathSciNet  Article  Google Scholar 

  22. 22

    Baraniuk R, Davenport M, De Vore R, et al. A simple proof of the restricted isometry property for random matrices. Constr Approx, 2008, 28: 253–263

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Mendelson S, Pajor A, Tomczak-Jaegermann N. Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constr Approx, 2008, 28: 277–289

    MathSciNet  Article  MATH  Google Scholar 

  24. 24

    Tropp J A, Wakin MB, DuarteM F, et al. Random filters for compressive sampling and reconstruction. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Toulouse, 2006. 14–19

    Google Scholar 

  25. 25

    Rauhut H, Romberg J, Tropp J. Restricted isometries for partial random circulant matrices. Appli Comput Harmon Anal, 2012, 32: 242–254

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Xu J, Pi Y, Cao Z. Optimized projection matrix for compressive sensing. EURASIP J Advances in Signal Process, 2010, 43: 1–8

    Google Scholar 

  27. 27

    Cleju N. Optimized projections for compressed sensing via rank-constrained nearest correlation matrix. Appli Comput Harmon Anal, 2014, 36: 495–507

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Tropp J. Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory, 2004, 50: 2231–2242

    MathSciNet  Article  MATH  Google Scholar 

  29. 29

    Donoho D, Elad M. On the stability of the basis pursuit in the presence of noise. EURASIP Signal Process J, 2006, 86: 511–532

    Article  MATH  Google Scholar 

  30. 30

    Li K, Gan L, Ling C. Convolutional compressed sensing using deterministic sequences. IEEE Trans Signal Process, 2013, 61: 740–752

    MathSciNet  Article  Google Scholar 

  31. 31

    Welch L. Lower bounds on the maximum cross correlation of signals. IEEE Trans Inf Theory, 1974, 20: 397–399

    MathSciNet  Article  MATH  Google Scholar 

  32. 32

    Dinan E, Jabbari B. Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Commun Mag, 1998, 36: 48–54

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jia Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Xu, J., Xia, XG. et al. Underwater sonar target imaging via compressed sensing with M sequences. Sci. China Inf. Sci. 59, 122308 (2016). https://doi.org/10.1007/s11432-016-5585-x

Download citation


  • sonar
  • high-resolution imaging
  • compressed sensing
  • M sequence
  • coherence parameter
  • restricted isometry property