Abstract
Homogeneity or heterogeneity of cells is the most fundamental and important features of analyzing biological associations of genes and gene products. Recent bioinformatics technology requires an automated high-throughput analysis application that can handle massively produced data from next generation sequences and dramatically increased size of public proteomic/genomic databases. Although Gene ontology (GO) database has been newly spotlighted on its wide coverage of machine-readable terminologies, its complex DB schema and vast amount of applications utilizing GO without deep considerations of GO term relations dilute the actual power of GO-based analysis and resulted in misleading/under estimated outcomes. Meanwhile, our recent studies showed that BSM score, a new way of measuring functional similarity, clearly outperformed existing conventional methods. However, implementing BSM score that requires integrating multiple databases and calculating scoring matrix is not trivial and even difficult for bioinformatics experts; therefore, a web-based graphical user interface (GUI) tool, Gene Ontology Analysis Layer (GOAL: http://www.ittc.ku.edu/chenlab/ goal) is introduced to provide user-friendly GO application powered by state of art functional similarity metric, BSM score.
This is a preview of subscription content, access via your institution.
References
- 1
Patel A P, Tirosh I, Trombetta J J, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014, 344: 1396–1401
- 2
Ploper D, Taelman V F, Robert L, et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Nat Acad Sci USA, 2015. 112: E420–E429
- 3
Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. Nat Genet, 2000, 25: 25–29
- 4
Salzman J, Chen R E, Olsen M N, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9: e1003777
- 5
Caffrey C R, Rohwer A, Oellien F, et al. A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni. PLoS ONE, 2009, 4: e4413
- 6
Campillos M, Kuhn M, Gavin A C, et al. Drug target identification using side-effect similarity. Science, 2008, 321: 263–266
- 7
Crowther G J, Shanmugam D, Carmona S J, et al. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis, 2010, 4: e804
- 8
Smith C. Drug target identification: a question of biology. Nature, 2004, 428: 225–231
- 9
Takenaka T. Classical vs reverse pharmacology in drug discovery. BJU Int, 2001, 88, Suppl 2: 7–10; discussion 49–50
- 10
Osadchy M, Kolodny R. Maps of protein structure space reveal a fundamental relationship between protein structure and function. Proc Nat Acad Sci USA, 2011, 108: 12301–12306
- 11
Yildirim M A, Goh K I, Cusick M E, et al. Drug-target network. Nat Biotechnol, 2007, 25: 1119–1126
- 12
Devos D, Valencia A. Intrinsic errors in genome annotation. Trends Genet, 2001, 17: 429–431
- 13
Petrey D, Fischer M, Honig B. Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Nat Acad Sci USA, 2009, 106: 17377–17382
- 14
Yu H Y, Luscombe N M, Lu H X, et al. Annotation transfer between genomes: protein-protein interologs and protein- DNA regulogs. Genom Res, 2004, 14: 1107–1118
- 15
Petrey D, Honig B. Is protein classification necessary? Toward alternative approaches to function annotation. Curr Opin Struct Biol, 2009, 19: 363–368
- 16
Jeong J C, Chen X-W. Evaluating topology-based metrics for GO term similarity measures. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, 2013. 43–48
- 17
Gentleman R. Visualizing and distances using GO. 2010. http://www.bioconductor.org/packages/release/bioc/ vignettes/GOstats/inst/doc/GOvis.pdf
- 18
Jiang J J, Conrath D W. Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of International Conference Research on Computational Linguistics (ROCLING X), Taipei, 1997
- 19
Resnik P. Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1995. 448–453
- 20
Schlicker A, Domingues F S, Rahnenfhrer J, et al. A new measure for functional similarity of gene products based on Gene Ontology. BMC Bioinform, 2006, 7: 302
- 21
Ye P, Peyser B D, Pan X, et al. Gene function prediction from congruent synthetic lethal interactions in yeast. Mol Syst Biol, 2005, 1: 2005–0026
- 22
Lerman G, Shakhnovich B E. Defining functional distance using manifold embeddings of gene ontology annotations. Proc Nat Acad Sci USA, 2007, 104: 11334–11339
- 23
Lin D. An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 1998. 296–304
- 24
Shannon C E. The mathematical theory of communication. 1963. MD Comput, 1997, 14: 306–317
- 25
Jeong J C, Chen X W. A new semantic functional similarity over gene ontology. IEEE/ACM Trans Comput Biol Bioinform, 2014, 12: 322–334
- 26
Chen X W, Jeong J C, Dermyer P. KUPS: constructing datasets of interacting and non-interacting protein pairs with associated attributions. Nucl Acids Res, 2011, 39: 750–754
- 27
Andreeva A, Howorth D, Chandonia J M, et al. Data growth and its impact on the SCOP database: new developments. Nucl Acids Res, 2008, 36: D419–D425
- 28
Orengo C A, Michie A D, Jones S, et al. CATH—a hierarchic classification of protein domain structures. Structure, 1997, 5: 1093–1108
- 29
Consortium T U. The Universal Protein Resource (UniProt) in 2010. Nucl Acids Res, 2010, 38: D142–D148
- 30
Lord P W, Stevens R D, Brass A, et al. Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation. Bioinformatics, 2003, 19: 1275–1283
- 31
Schlicker A, Albrecht M. FunSimMat: a comprehensive functional similarity database. Nucl Acids Res, 2008, 36: D434–D439
- 32
Pesquita C, Faria D, Bastos H, et al. Metrics for GO based protein semantic similarity: a systematic evaluation. BMC Bioinform, 2008, 9, Suppl 5: S4
- 33
Wang J Z, Du Z, Payattakool R, et al. A new method to measure the semantic similarity of GO terms. Bioinformatics, 2007, 23: 1274–1281
- 34
Hamosh A, Scott A F, Amberger J S, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl Acids Res, 2005, 33: D514–D517
- 35
Schlicker A, Lengauer T, Albrecht M. Improving disease gene prioritization using the semantic similarity of Gene Ontology terms. Bioinformatics, 2010, 26: i561–i567
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jeong, J.C., Li, G. & Chen, XW. GOAL: the comprehensive gene ontology analysis layer. Sci. China Inf. Sci. 59, 070108 (2016). https://doi.org/10.1007/s11432-016-5581-1
Received:
Accepted:
Published:
Keywords
- gene ontology
- molecular function
- functional similarity
- network-based analysis
- BSM score