Pinning controllability of autonomous Boolean control networks

Abstract

Autonomous Boolean networks (ABNs), which are developed to model the Boolean networks (BNs) with regulatory delays, are well known for their advantages of characterizing the intrinsic evolution rules of biological systems such as the gene regulatory networks. As a special type of ABNs with binary inputs, the autonomous Boolean control networks (ABCNs) are introduced for designing and analyzing the therapeutic intervention strategies where the binary inputs represent whether a certain medicine is dominated or not. An important problem in the therapeutic intervention is to design a control sequence steering an ABCN from an undesirable location (implying a diseased state) to a desirable one (corresponding to a healthy state). Motivated by such background, this paper aims to investigate the reachability and controllability of ABCNs with pinning controllers. Several necessary and sufficient criteria are provided by resorting to the semi-tensor product techniques of matrices. Moreover, an effective pinning control algorithm is presented for steering an ABCN from any given states to the desired state in the shortest time period. Numerical examples are also presented to demonstrate the results obtained.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Wang Z D, Wu H H, Liang J L, et al. On modeling and state estimation for genetic regulatory networks with polytopic uncertainties. IEEE Trans Nanobiosci, 2013, 12: 13–20

    Article  Google Scholar 

  2. 2

    Shen B, Wang Z D, Liang J L, et al. Sampled-data H8 filtering for stochastic genetic regulatory networks. Int J Robust Nonlinear Control, 2011, 21: 1759–1777

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    MathSciNet  Article  Google Scholar 

  4. 4

    Aldana M. Boolean dynamics of networks with scale-free topology. Phys D, 2003, 185: 45–66

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Akutsu T, Hayashida M, Ching W-K, et al. Control of Boolean networks: hardness results and algorithms for tree structured networks. J Theor Biol, 2007, 244: 670–679

    MathSciNet  Article  Google Scholar 

  6. 6

    Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet, 2001, 2: 343–372

    Article  Google Scholar 

  7. 7

    Cheng D Z, Qi H S. A linear representation of dynamics of Boolean networks. IEEE Trans Automat Control, 2010, 55: 2251–2258

    MathSciNet  Article  Google Scholar 

  8. 8

    Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1667

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Laschov D, Margaliot M. Controllability of Boolean control networks via the Perron-Frobenius theory. Automatica, 2012, 48: 1218–1223

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Automat Control, 2013, 58: 1390–1401

    MathSciNet  Article  Google Scholar 

  11. 11

    Cheng D Z, Qi H S, Li Z Q, et al. Stability and stabilization of Boolean networks. Int J Robust Nonlinear Control, 2011, 21: 134–156

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Li H T, Wang Y Z. Consistent stabilizability of switched Boolean networks. Neural Netw, 2013, 46: 183–189

    Article  MATH  Google Scholar 

  13. 13

    Li H T, Wang Y Z, Liu Z B. Stability analysis for switched Boolean networks under arbitrary switching signals. IEEE Trans Automat Control, 2014, 59: 1978–1982

    MathSciNet  Article  Google Scholar 

  14. 14

    Zhao Y, Cheng D Z. On controllability and stabilizability of probabilistic Boolean control networks. Sci China Inf Sci, 2014, 57: 012202

    MathSciNet  MATH  Google Scholar 

  15. 15

    Fornasini E, Valcher M E. Optimal control of Boolean control networks. IEEE Trans Automat Control, 2014, 59: 1258–1270

    MathSciNet  Article  Google Scholar 

  16. 16

    Laschov D, Margaliot M. A maximum principle for single-input Boolean control networks. IEEE Trans Automat Control, 2011, 56: 913–917

    MathSciNet  Article  Google Scholar 

  17. 17

    Zou Y L, Zhu J D. System decomposition with respect to inputs for Boolean control networks. Automatica, 2014, 50: 1304–1309

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Zou Y L, Zhu J D. Kalman decomposition for Boolean control networks. Automatica, 2015, 54: 65–71

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Cheng D Z. On finite potential games. Automatica, 2014, 50: 1793–1801

    MathSciNet  Article  MATH  Google Scholar 

  20. 20

    Xu X R, Hong Y G. Matrix approach to model matching of asynchronous sequential machines. IEEE Trans Automat Control, 2013, 58: 2974–2979

    MathSciNet  Article  Google Scholar 

  21. 21

    Smolen P, Baxter D A, Byrne J H. Mathematical modeling of gene networks. Neuron, 2000, 26: 567–580

    Article  MATH  Google Scholar 

  22. 22

    Li F F, Sun J T. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47: 603–607

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Li F F, Sun J T. Controllability of higher order Boolean control networks. Appl Math Comput, 2012, 219: 158–169

    MathSciNet  MATH  Google Scholar 

  24. 24

    Chen H, Sun J T. A new approach for global controllability of higher order Boolean control network. Neural Netw, 2013, 39: 12–17

    Article  MATH  Google Scholar 

  25. 25

    Zhang L J, Zhang K Z. Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories. Sci China Inf Sci, 2013, 56: 108201

    MathSciNet  Google Scholar 

  26. 26

    Zhang L J, Zhang K Z. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE Trans Neural Netw Learn Syst, 2013, 24: 1478–1484

    Article  Google Scholar 

  27. 27

    Müller F-J, Schuppert A. Few inputs can reprogram biological networks. Nature, 2011, 478: E4

    Article  Google Scholar 

  28. 28

    Lin G-Q, Ao B, Chen J-W, et al. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach. New J Phys, 2014, 16: 125010

    Article  Google Scholar 

  29. 29

    Lu J Q, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE Trans Automat Control, 2015, 61: 1658–1663

    Article  Google Scholar 

  30. 30

    Li F F. Pinning control design for the stabilization of Boolean networks. IEEE Trans Neural Netw Learn Syst, 2015, doi: 10.1109/TNNLS.2015.2449274

    Google Scholar 

  31. 31

    Ghil M, Zaliapin I, Coluzzi B. Boolean delay equations: a simple way of looking at complex systems. Phys D, 2008, 237: 2967–2986

    MathSciNet  Article  MATH  Google Scholar 

  32. 32

    Zhang R, Cavalcante H L, Gao Z, et al. Boolean chaos. Phys Rev E, 2009, 80: 045202

    Article  Google Scholar 

  33. 33

    Rivera-Durón R R, Campos-Cantón E, Campos-Cantón I, et al. Forced synchronization of autonomous dynamical Boolean networks. Chaos, 2015, 25: 083113

    MathSciNet  Article  Google Scholar 

  34. 34

    Glass L, Perkins T J, Mason J, et al. Chaotic dynamics in an electronic model of a genetic network. J Stat Phys, 2005, 121: 969–994

    MathSciNet  Article  MATH  Google Scholar 

  35. 35

    Cheng X R, Sun M Y, Socolar J E S. Autonomous Boolean modelling of developmental gene regulatory networks. J R Soc Interface, 2013, 10: 20120574

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinling Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liang, J. & Wang, Z. Pinning controllability of autonomous Boolean control networks. Sci. China Inf. Sci. 59, 070107 (2016). https://doi.org/10.1007/s11432-016-5579-8

Download citation

Keywords

  • autonomous Boolean networks
  • semi-tensor product
  • controllability
  • pinning control scheme
  • network transition matrix