This is a preview of subscription content, access via your institution.
References
- 1
Cusick T W, Li Y, Stânicâ P. Balanced symmetric functions over GF(p). IEEE Trans Inf Theory, 2008, 54: 1304–1307
- 2
Li Y. Results on rotation symmetric polynomials over GF(p). Inf Sci, 2008, 178: 280–286
- 3
Fu S J, Qu L J, Li C, et al. Balanced rotation symmetric Boolean functions with maximum algebraic immunity. IET Inform Secur, 2011, 5: 93–99
- 4
Fu S J, Li C, Matsuura K, et al. Enumeration of balanced symmetric functions over GF(p). Inf Process Lett, 2010, 110: 544–548
- 5
Ke P H, Huang L L, Zhang S Y. Improved lower bound on the number of balanced symmetric functions over GF(p). Inf Sci, 2009, 179: 682–687
- 6
Zhang W G, Jiang F Q, Tang D. Construction of highly nonlinear resilient Boolean functions satisfying strict avalanche criterion. Sci China Inf Sci, 2014, 57: 049101
- 7
Du J, Wen Q Y, Zhang J, et al. Constructions of resilient rotation symmetric Boolean functions on given number of variables. IET Inform Secur, 2014, 8: 265–272
- 8
Du J, Pang S Q, Wen Q Y, et al. Construction and count of 1-resilient rotation symmetric Boolean functions on pr variables. Chin J Electron, 2014, 23: 816–820
- 9
Stinson D R. Resilient functions and large sets of orthogonal arrays. Congressus Numer, 1993, 92: 105–110
- 10
Gopalakrishnan K, Stinson D R. Three characterizations of non-binary correlation-immune and resilient functions. Des Codes Cryptogr, 1995, 5: 241–251
Author information
Affiliations
Corresponding author
Additional information
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Du, J., Fu, S., Qu, L. et al. New constructions of q-variable 1-resilient rotation symmetric functions over \(\mathbb{F}_p \) . Sci. China Inf. Sci. 59, 079102 (2016). https://doi.org/10.1007/s11432-016-5569-x
Received:
Accepted:
Published:
Keywords
- Boolean Function
- Symmetric Function
- Symmetric Boolean Function
- Rotation Symmet
- Symmetric Orbit