New constructions of q-variable 1-resilient rotation symmetric functions over \(\mathbb{F}_p \)

This is a preview of subscription content, access via your institution.

References

  1. 1

    Cusick T W, Li Y, Stânicâ P. Balanced symmetric functions over GF(p). IEEE Trans Inf Theory, 2008, 54: 1304–1307

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Li Y. Results on rotation symmetric polynomials over GF(p). Inf Sci, 2008, 178: 280–286

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Fu S J, Qu L J, Li C, et al. Balanced rotation symmetric Boolean functions with maximum algebraic immunity. IET Inform Secur, 2011, 5: 93–99

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Fu S J, Li C, Matsuura K, et al. Enumeration of balanced symmetric functions over GF(p). Inf Process Lett, 2010, 110: 544–548

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Ke P H, Huang L L, Zhang S Y. Improved lower bound on the number of balanced symmetric functions over GF(p). Inf Sci, 2009, 179: 682–687

    MathSciNet  Article  MATH  Google Scholar 

  6. 6

    Zhang W G, Jiang F Q, Tang D. Construction of highly nonlinear resilient Boolean functions satisfying strict avalanche criterion. Sci China Inf Sci, 2014, 57: 049101

    Google Scholar 

  7. 7

    Du J, Wen Q Y, Zhang J, et al. Constructions of resilient rotation symmetric Boolean functions on given number of variables. IET Inform Secur, 2014, 8: 265–272

    Article  Google Scholar 

  8. 8

    Du J, Pang S Q, Wen Q Y, et al. Construction and count of 1-resilient rotation symmetric Boolean functions on pr variables. Chin J Electron, 2014, 23: 816–820

    Google Scholar 

  9. 9

    Stinson D R. Resilient functions and large sets of orthogonal arrays. Congressus Numer, 1993, 92: 105–110

    MathSciNet  Google Scholar 

  10. 10

    Gopalakrishnan K, Stinson D R. Three characterizations of non-binary correlation-immune and resilient functions. Des Codes Cryptogr, 1995, 5: 241–251

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao Li.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, J., Fu, S., Qu, L. et al. New constructions of q-variable 1-resilient rotation symmetric functions over \(\mathbb{F}_p \) . Sci. China Inf. Sci. 59, 079102 (2016). https://doi.org/10.1007/s11432-016-5569-x

Download citation

Keywords

  • Boolean Function
  • Symmetric Function
  • Symmetric Boolean Function
  • Rotation Symmet
  • Symmetric Orbit