Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

New constructions of q-variable 1-resilient rotation symmetric functions over \(\mathbb{F}_p \)

This is a preview of subscription content, log in to check access.

References

  1. 1

    Cusick T W, Li Y, Stânicâ P. Balanced symmetric functions over GF(p). IEEE Trans Inf Theory, 2008, 54: 1304–1307

  2. 2

    Li Y. Results on rotation symmetric polynomials over GF(p). Inf Sci, 2008, 178: 280–286

  3. 3

    Fu S J, Qu L J, Li C, et al. Balanced rotation symmetric Boolean functions with maximum algebraic immunity. IET Inform Secur, 2011, 5: 93–99

  4. 4

    Fu S J, Li C, Matsuura K, et al. Enumeration of balanced symmetric functions over GF(p). Inf Process Lett, 2010, 110: 544–548

  5. 5

    Ke P H, Huang L L, Zhang S Y. Improved lower bound on the number of balanced symmetric functions over GF(p). Inf Sci, 2009, 179: 682–687

  6. 6

    Zhang W G, Jiang F Q, Tang D. Construction of highly nonlinear resilient Boolean functions satisfying strict avalanche criterion. Sci China Inf Sci, 2014, 57: 049101

  7. 7

    Du J, Wen Q Y, Zhang J, et al. Constructions of resilient rotation symmetric Boolean functions on given number of variables. IET Inform Secur, 2014, 8: 265–272

  8. 8

    Du J, Pang S Q, Wen Q Y, et al. Construction and count of 1-resilient rotation symmetric Boolean functions on pr variables. Chin J Electron, 2014, 23: 816–820

  9. 9

    Stinson D R. Resilient functions and large sets of orthogonal arrays. Congressus Numer, 1993, 92: 105–110

  10. 10

    Gopalakrishnan K, Stinson D R. Three characterizations of non-binary correlation-immune and resilient functions. Des Codes Cryptogr, 1995, 5: 241–251

Download references

Author information

Correspondence to Chao Li.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, J., Fu, S., Qu, L. et al. New constructions of q-variable 1-resilient rotation symmetric functions over \(\mathbb{F}_p \) . Sci. China Inf. Sci. 59, 079102 (2016). https://doi.org/10.1007/s11432-016-5569-x

Download citation

Keywords

  • Boolean Function
  • Symmetric Function
  • Symmetric Boolean Function
  • Rotation Symmet
  • Symmetric Orbit