Abstract
In the last five decades, the number of transistors on a chip has increased exponentially in accordance with the Moore’s law, and the semiconductor industry has followed this law as long-term planning and targeting for research and development. However, as the transistor feature size is further shrunk to sub-14nm nanometer regime, modern integrated circuit (IC) designs are challenged by exacerbated manufacturability and reliability issues. To overcome these grand challenges, full-chip modeling and physical design tools are imperative to achieve high manufacturability and reliability. In this paper, we will discuss some key process technology and VLSI design co-optimization issues in nanometer VLSI.
This is a preview of subscription content, access via your institution.
References
- 1
Moore G E. Lithography and the future of Moore’s law. Proc SPIE, 1995, 2438: 2–17
- 2
Pan D Z, Yu B, Gao J-R. Design for manufacturing with emerging nanolithography. IEEE Trans Comput Aided Des Integr Circ Syst, 2013, 32: 1453–1472
- 3
Yu B, Pan D Z. Design for Manufacturability with Advanced Lithography. Springer, 2015
- 4
Reis R, Cao Y, Wirth G. Circuit Design for Reliability. Springer, 2014
- 5
Maricau E, Gielen G. Computer-aided analog circuit design for reliability in nanometer CMOS. IEEE J Emerg Sel Top Circ Syst, 2011, 1: 50–58
- 6
Mallik A, Zuber P, Liu T T, et al. TEASE: a systematic analysis framework for early evaluation of FinFET-based advanced technology nodes. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), Austin, 2013. 24: 1–24: 6
- 7
Liebmann L, Chu A, Gutwin P. The daunting complexity of scaling to 7nm without EUV: pushing DTCO to the extreme. Proc SPIE, 2015: 9427
- 8
Chava B, Rio D, Sherazi Y, et al. Standard cell design in N7: EUV vs. immersion. Proc SPIE, 2015: 9427
- 9
Taylor B, Pileggi L. Exact combinatorial optimization methods for physical design of regular logic bricks. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Diego, 2007. 344–349
- 10
Maly W, Lin Y W, Sadowska M M. OPC-free and minimally irregular IC design style. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Diego, 2007. 954–957
- 11
Zhang H B, Wong M D F, Chao K Y. On process-aware 1-D standard cell design. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Taipei, 2010. 838–842
- 12
Ryzhenko N, Burns S. Physical synthesis onto a layout fabric with regular diffusion and polysilicon geometries. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Diego, 2011. 83–88
- 13
Wu P H, Lin M P, Chen T C, et al. 1-D cell generation with printability enhancement. IEEE Trans Comput Aided Des Integr Circ Syst, 2013, 32: 419–432
- 14
Hougardy S, Nieberg T, Schneider J. BonnCell: automatic layout of leaf cells. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Yokohama, 2013. 453–460
- 15
Ye W, Yu B, Ban Y-C, et al. Standard cell layout regularity and pin access optimization considering middle-of-line. In: Proceedings of ACM Great Lakes Symposium on VLSI (GLSVLSI), Pittsburgh, 2015. 289–294
- 16
Xu X Q, Cline B, Yeric G, et al. A systematic framework for evaluating cell level middle-of-line (MOL) robustness for multiple patterning. Proc SPIE, 2015: 9427
- 17
Xu X Q, Cline B, Yeric G, et al. Self-aligned double patterning aware pin access and standard cell layout cooptimization. IEEE Trans Comput Aided Des Integr Circ Syst, 2015, 34: 699–712
- 18
Hu S Y, Hu J. Pattern sensitive placement for manufacturability. In: Proceedings of ACM International Symposium on Physical Design (ISPD), Austin, 2007. 27–34
- 19
Chen T C, Cho M, Pan D Z, et al. Metal-density-driven placement for CMP variation and routability. IEEE Trans Comput Aided Des Integr Circ Syst, 2008, 27: 2145–2155
- 20
Shim S, Lee Y, Shin Y. Lithographic defect aware placement using compact standard cells without inter-cell margin. In: Proceedings of 19th Asia and South Pacific Design Automation Conference (ASPDAC), Singapore, 2014. 47–52
- 21
Gupta M, Jeong K, Kahng A B. Timing yield-aware color reassignment and detailed placement perturbation for bimodal cd distribution in double patterning lithography. IEEE Trans Comput Aided Des Integr Circ Syst, 2010, 29: 1229–1242
- 22
Liebmann L, Pietromonaco D, Graf M. Decomposition-aware standard cell design flows to enable double-patterning technology. Proc SPIE, 2011: 7974
- 23
Agarwal K B, Alpert C J, Li Z, et al. Multi-patterning lithography aware cell placement in integrated circuit design, 2013. US Patent 8-495-548
- 24
Gao J-R, Yu B, Huang R, et al. Self-aligned double patterning friendly configuration for standard cell library considering placement. Proc SPIE, 2013: 8684
- 25
Tian H T, Du Y L, Zhang H B, et al. Triple patterning aware detailed placement with constrained pattern assignment. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2014. 116–123
- 26
Kuang J, Chow W-K, Young E F Y. Triple patterning lithography aware optimization for standard cell based design. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2014. 108–115
- 27
Lin T, Chu C. TPL-aware displacement-driven detailed placement refinement with coloring constraints. In: Proceedings of ACM International Symposium on Physical Design (ISPD), Monterey, 2015. 75–80
- 28
Yu B, Xu X Q, Ga J-R, et al. Methodology for standard cell compliance and detailed placement for triple patterning lithography. IEEE Trans Comput Aided Des Integr Circ Syst, 2015, 34: 726–739
- 29
Chien H-A, Chen Y-H, Han S-Y, et al. On refining row-based detailed placement for triple patterning lithography. IEEE Trans Comput Aided Des Integr Circ Syst, 2015, 34: 778–793
- 30
Lin Y B, Yu B, Xu B Y, et al. Triple patterning aware detailed placement toward zero cross-row middle-of-line conflict. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, 2015. 396–403
- 31
Yu B, Xu X Q, Gao J-R, et al. Methodology for standard cell compliance and detailed placement for triple patterning lithography. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2013. 349–356
- 32
Lin Y B, Yu B, Zou Y, et al. Stitch aware detailed placement for multiple e-beam lithography. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Macao, 2016. 186–191
- 33
Liu C-Y, Chang Y-W. Simultaneous EUV flare-and CMP-aware placement. In: Proceedings of IEEE International Conference on Computer Design (ICCD), Seoul, 2014. 249–255
- 34
Shim S, Chung W, Shin Y. Defect probability of directed self-assembly lithography: fast identification and postplacement optimization. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, 2015. 404–409
- 35
Du Y L, Wong M D F. Optimization of standard cell based detailed placement for 16 nm FinFET process. In: Proceedings of IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE), Dresden, 2014. 357: 6
- 36
Fang S-Y, Liu I-J, Chang Y-W. Stitch-aware routing for multiple e-beam lithography. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), Austin, 2013. 25: 6
- 37
Cho M, Ban Y, Pan D Z. Double patterning technology friendly detailed routing. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2008. 506–511
- 38
Yuan K, Lu K, and Pan D Z. Double patterning lithography friendly detailed routing with redundant via consideration. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2009. 63–66
- 39
Lin Y-H, Li Y-L. Double patterning lithography aware gridless detailed routing with innovative conflict graph. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), Anaheim, 2010. 398–403
- 40
Lin Y-H, Ban Y-C, Pan D Z, et al. DOPPLER: DPL-aware and OPC-friendly gridless detailed routing with mask density balancing. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2011. 283–289
- 41
Ma Q, Zhang H B, Wong M D F. Triple patterning aware routing and its comparison with double patterning aware routing in 14nm technology. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2012. 591–596
- 42
Lin Y-H, Yu B, Pan D Z, et al. TRIAD: a triple patterning lithography aware detailed router. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2012. 123–129
- 43
Hsu P-Y, Chang Y-W. Non-stitch triple patterning-aware routing based on conflict graph pre-coloring. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Chiba/Tokyo, 2015. 390–395
- 44
Liu Z Q, Liu C W, Young E F Y. An effective triple patterning aware grid-based detailed routing approach. In: Proceedings of IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE), Grenoble, 2015. 1641–1646
- 45
Gillijns W, Sherazi S M Y, Trivkovic D, et al. Impact of a SADP flow on the design and process for N10/N7 metal layers. Proc SPIE, 2015: 9427
- 46
Mirsaeedi M, Torres J A, Anis M. Self-aligned double-patterning (SADP) friendly detailed routing. Proc SPIE, 2011: 7974
- 47
Gao J-R, Pan D Z. Flexible self-aligned double patterning aware detailed routing with prescribed layout planning. In: Proceedings of ACM International Symposium on Physical Design (ISPD), Napa Valley, 2012. 25–32
- 48
Kodama C, Ichikawa H, Nakayama K, et al. Self-aligned double and quadruple patterning-aware grid routing with hotspots control. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Yokohama, 2013. 267–272
- 49
Du Y L, Ma Q, Song H, et al. Spacer-is-dielectric-compliant detailed routing for self-aligned double patterning lithography. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), Austin, 2013. 93: 6
- 50
Liu I-J, Fang S-Y, Chang Y-W. Overlay-aware detailed routing for self-aligned double patterning lithography using the cut process. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2014. 50: 6
- 51
Fang S-Y. Cut mask optimization with wire planning in self-aligned multiple patterning full-chip routing. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Chiba/Tokyo, 2015. 396–401
- 52
Ding Y X, Chu C, Mak W-K. Detailed routing for spacer-is-metal type self-aligned double/quadruple patterning lithography. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2015. 69: 6
- 53
Xu X Q, Yu B, Gao J-R, et al. PARR: pin access planning and regular routing for self-aligned double patterning. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2015. 28: 6
- 54
Yang J-S and Pan D Z. Overlay aware interconnect and timing variation modeling for double patterning technology. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2008. 488–493
- 55
van Oosten A, Nikolsky P, Huckabay J, et al. Pattern split rules! A feasibility study of rule based pitch decomposition for double patterning. Proc SPIE, 2007, 6730
- 56
Kahng A B, Park C-H, Xu X, et al. Layout decomposition approaches for double patterning lithography. IEEE Trans Comput Aided Des Integr Circ Syst, 2010, 29: 939–952
- 57
Yuan K, Yang J-S, Pan D Z. Double patterning layout decomposition for simultaneous conflict and stitch minimization. IEEE Trans Comput Aided Des Integr Circ Syst, 2010, 29: 185–196
- 58
Xu Y, Chu C. GREMA: graph reduction based efficient mask assignment for double patterning technology. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2009. 601–606
- 59
Xu Y, Chu C. A matching based decomposer for double patterning lithography. In: Proceedings of ACM International Symposium on Physical Design (ISPD), San Francisco, 2010. 121–126
- 60
Tang X P, Cho M. Optimal layout decomposition for double patterning technology. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2011. 9–13
- 61
Yang J-S, Lu K, Cho M, et al. A new graph-theoretic, multi-objective layout decomposition framework for double patterning lithography. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Taipei, 2010. 637–644
- 62
Yu B, Yuan K, Ding D, et al. Layout decomposition for triple patterning lithography. IEEE Trans Comput Aided Des Integr Circ Syst, 2015, 34: 433–446
- 63
Yu B, Yuan K, Zhang B Y, et al. Layout decomposition for triple patterning lithography. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2011. 1–8
- 64
Yu B, Pan D Z. Layout decomposition for quadruple patterning lithography and beyond. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2014. 53: 6
- 65
Fang S-Y, Chang Y-W, and Chen W-Y. A novel layout decomposition algorithm for triple patterning lithography. IEEE Trans Comput Aided Des Integr Circ Syst, 2014, 33: 397–408
- 66
Kuang J, Young E F Y. An efficient layout decomposition approach for triple patterning lithography. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), Austin, 2013. 69: 6
- 67
Zhang Y, Luk W-S, Zhou H, et al. Layout decomposition with pairwise coloring for multiple patterning lithography. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2013. 170–177
- 68
Tian H T, Zhang H B, Ma Q, et al. A polynomial time triple patterning algorithm for cell based row-structure layout. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2012. 57–64
- 69
Tian H T, Du Y L, Zhang H B, et al. Constrained pattern assignment for standard cell based triple patterning lithography. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2013. 178–185
- 70
Tian H T, Zhang H B, Xiao Z G, et al. An efficient linear time triple patterning solver. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Chiba/Tokyo, 2015. 208–213
- 71
Chien H-A, Han S-Y, Chen Y-H, et al. A cell-based row-structure layout decomposer for triple patterning lithography. In: Proceedings of ACM International Symposium on Physical Design (ISPD), Monterey, 2015. 67–74
- 72
Mirsaeedi M, Torres J A, Anis M. Self-aligned double patterning (SADP) layout decomposition. In: Proceedings of IEEE International Symposium on Quality Electronic Design (ISQED), Santa Clara, 2011. 1–7
- 73
Zhang H B, Du Y L, Wong M D, et al. Self-aligned double patterning decomposition for overlay minimization and hot spot detection. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Diego, 2011. 71–76
- 74
Ban Y, Lucas K, Pan D Z. Flexible 2D layout decomposition framework for spacer-type double pattering lithography. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Diego, 2011. 789–794
- 75
Xiao Z G, Zhang H B, Du Y L, et al. A polynomial time exact algorithm for self-aligned double patterning layout decomposition. In: Proceedings of ACM International Symposium on Physical Design (ISPD), Napa Valley, 2012. 17–24
- 76
Xiao Z G, Du Y L, Tian H T, et al. Optimally minimizing overlay violation in self-aligned double patterning decomposition for row-based standard cell layout in polynomial time. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2013. 32–39
- 77
Zhang H B, Du Y L, Wong M D F, et al. Characterization and decomposition of self-aligned quadruple patterning friendly layout. Proc SPIE, 2012: 8326
- 78
Kang W L, Feng C, Chen Y. Mask strategy and layout decomposition for self-aligned quadruple patterning. Proc SPIE, 2013: 8684
- 79
Ma Y S, Torres J A, Fenger G, et al. Challenges and opportunities in applying grapho-epitaxy DSA lithography to metal cut and contact/via applications. Proc SPIE, 2014: 9231
- 80
Ma Y S, Lei J J, Torres J A, et al. Directed self-assembly (DSA) grapho-epitaxy template generation with immersion lithography. Proc SPIE, 2015: 9423
- 81
Wong H-S P, Yi H, Tung M, et al. Physical layout design of directed self-assembly guiding alphabet for IC contact hole/via patterning. In: Proceedings of ACM International Symposium on Physical Design (ISPD), Monterey, 2015. 65–66
- 82
Bita I, Yang J K W, Jung Y S, et al. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science, 2008, 321: 939–943
- 83
Luo M, Epps T H. Directed block copolymer thin film self-assembly: emerging trends in nanopattern fabrication. Macromolecules, 2013, 46: 7567–7579
- 84
Yi H, Bao X-Y, Zhang J, et al. Contact-hole patterning for random logic circuit using block copolymer directed self-assembly. Proc SPIE, 2012: 8323
- 85
Du Y L, Guo D F, Wong M D F, et al. Block copolymer directed self-assembly (DSA) aware contact layer optimization for 10 nm 1D standard cell library. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2013. 186–193
- 86
Xiao Z G, Du Y L, Wong M D F, et al. DSA template mask determination and cut redistribution for advanced 1D gridded design. Proc SPIE, 2013: 8880
- 87
Ou J J, Yu B, Gao J-R, et al. Directed self-assembly based cut mask optimization for unidirectional design. In: Proceedings of ACM Great Lakes Symposium on VLSI (GLSVLSI), Pittsburgh, 2015. 83–86
- 88
Fang S-Y, Hong Y-X, Lu Y-Z. Simultaneous guiding template optimization and redundant via insertion for directed self-assembly. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, 2015. 410–417
- 89
Mallik A, Ryckaert J, Mercha A, et al. Maintaining Moore’s law -enabling cost-friendly dimensional scaling. Proc SPIE, 2015: 9422
- 90
Badr Y, Torres A, Gupta P. Mask assignment and synthesis of DSA-MP hybrid lithography for sub-7nm contacts/vias. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2015. 70: 6
- 91
Pain L, Jurdit M, Todeschini J, et al. Electron beam direct write lithography flexibility for ASIC manufacturing an opportunity for cost reduction. Proc SPIE, 2005, 5751
- 92
Kahng A B, Xu X, Zelikovsky A. Yield-and cost-driven fracturing for variable shaped-beam mask writing. Proc SPIE, 2004, 5567
- 93
Kahng A B, Xu X, Zelikovsky A. Fast yield-driven fracture for variable shaped-beam mask writing. Proc SPIE, 2006, 6283
- 94
Ma X, Jiang S L, Zakhor A. A cost-driven fracture heuristics to minimize sliver length. Proc SPIE, 2011: 7973
- 95
Sahouria E, Bowhill A. Generalization of shot definition for variable shaped e-beam machines for write time reduction. Proc SPIE, 2010: 7823
- 96
Elayat A, Lin T, Sahouria E, et al. Assessment and comparison of different approaches for mask write time reduction. Proc SPIE, 2011: 8166
- 97
Yuan K, Yu B, Pan D Z. E-Beam lithography stencil planning and optimization with overlapped characters. IEEE Trans Comput Aided Des Integr Circ Syst, 2012, 31: 167–179
- 98
Edelsbrunner A, O’Rourke J, Welzl E. Stationing guards in rectilinear art galleries. Comput Vis Graph Image Process, 1984, 28: 167–176
- 99
Lopez M A, Mehta D P. Efficient decomposition of polygons into L-shapes with application to VLSI layouts. ACM Trans Des Automat Electron Syst, 1996, 1: 371–395
- 100
Yu B, Gao J-R, Pan D Z. L-Shape based layout fracturing for E-Beam lithography. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Yokohama, 2013. 249–254
- 101
Kim J, Fan M. Hotspot detection on Post-OPC layout using full chip simulation based verification tool: A case study with aerial image simulation. Proc SPIE, 2003, 5256
- 102
Roseboom E, Rossman M, Chang F-C, et al. Automated full-chip hotspot detection and removal flow for interconnect layers of cell-based designs. Proc SPIE, 2007, 6521
- 103
Kahng A B, Park C-H, Xu X. Fast dual graph based hotspot detection. Proc SPIE, 2006, 6349
- 104
Yao H, Sinha S, Chiang C, et al. Efficient process-hotspot detection using range pattern matching. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2006. 625–632
- 105
Xu J Y, Sinha S, Chiang C C. Accurate detection for process-hotspots with vias and incomplete specification. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2007. 839–846
- 106
Yu Y-T, Chan Y-C, Sinha S, et al. Accurate process-hotspot detection using critical design rule extraction. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2012. 1167–1172
- 107
Wen W-Y, Li J-C, Lin S-Y, et al. A fuzzy-matching model with grid reduction for lithography hotspot detection. IEEE Trans Comput Aided Des Integr Circ Syst, 2014, 33: 1671–1680
- 108
Ding D, Wu X, Ghosh J, et al. Machine learning based lithographic hotspot detection with critical-feature extraction and classification. In: Proceedings of IEEE International Conference on IC Design and Technology (ICICDT), Austin, 2009. 219–222
- 109
Drmanac D G, Liu F, Wang L-C. Predicting variability in nanoscale lithography processes. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2009. 545–550
- 110
Ding D, Torres J A, Pan D Z. High performance lithography hotspot detection with successively refined pattern identifications and machine learning. IEEE Trans Comput Aided Des Integr Circ Syst, 2011, 30: 1621–1634
- 111
Wuu J-Y, Pikus F-G, Torres A, et al. Rapid layout pattern classification. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Yokohama, 2011. 781–786
- 112
Ding D, Yu B, Ghosh J, et al. EPIC: efficient prediction of IC manufacturing hotspots with a unified meta-classification formulation. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Sydney, 2012. 263–270
- 113
Yu Y-T, Lin G-H, Jiang I H-R, et al. Machine-learning-based hotspot detection using topological classification and critical feature extraction. IEEE Trans Comput Aided Des Integr Circ Syst, 2015, 34: 460–470
- 114
Yu B, Gao J-R, Ding D, et al. Accurate lithography hotspot detection based on principal component analysis-support vector machine classifier with hierarchical data clustering. J Micro/Nanolithogr MEMS MOEMS, 2015, 14: 011003
- 115
Matsunawa T, Gao J-R, Yu B, et al. A new lithography hotspot detection framework based on AdaBoost classifier and simplified feature extraction. Proc SPIE, 2015: 9427
- 116
Kumar S V, Kim C H, Sapatnekar S. An analytical model for negative bias temperature instability. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2006. 493–496
- 117
Wang R S, Luo M L, Guo S F, et al. A unified approach for trap-aware device/circuit co-design in nanoscale CMOS technology. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), Washington DC, 2013. 33.5.1–33.5.4
- 118
Roy S, Pan D Z. Reliability aware gate sizing combating NBTI and oxide breakdown. In: Proceedings of International Conference on VLSI Design, Mumbai, 2014. 38–43
- 119
Chakraborty A, Pan D Z. Skew management of NBTI impacted gated clock trees. In: Proceedings of ACM International Symposium on Physical Design (ISPD), San Francisco, 2010. 127–133
- 120
Roy S. Logic and Clock Network Optimization in Nanometer VLSI Circuits. Dissertation for the Doctoral Degree. The University of Texas at Austin, 2015
- 121
Kumar S V, Kim C H, Sapatnekar S S. NBTI aware synthesis of digital circuits. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Diego, 2007. 370–375
- 122
Yang X, Saluja K. Combating NBTI degradation via gate sizing. In: Proceedings of IEEE International Symposium on Quality Electronic Design (ISQED), San Jose, 2007. 47–52
- 123
Vattikonda R, Wang W P, Cao Y. Modeling and minimization of PMOS NBTI effect for robust nanometer design. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2006. 1047–1052
- 124
Wu K-C, Marculescu D. Joint logic restructuring and pin reordering against NBTI-induced performance degradation. In: Proceedings of IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE), Nice, 2009. 75–80
- 125
Lin C-H, Roy S, Wang C-Y, et al. CSL: coordinated and scalable logic synthesis techniques for effective NBTI reduction. In: Proceedings of IEEE International Conference on Computer Design (ICCD), New York, 2015. 236–243
- 126
Lee K-T, Kang C Y, Yoo O S, et al. PBTI-associated high-temperature hot carrier degradation of nMOSFETs with metal-gate/high-k dielectrics. IEEE Electron Dev Lett, 2008. 389–391
- 127
Ebrahimi M, Oboril F, Kiamehr S, et al. Aging-aware logic synthesis. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2013. 61–68
- 128
Oboril F, Tahoori M B. ExtraTime: modeling and analysis of wearout due to transistor aging at microarchitecturelevel. In: Proceedings of IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Boston, 2012. 1–12
- 129
Fang J X, Sapatnekar S S. Scalable methods for the analysis and optimization of gate oxide breakdown. In: Proceedings of IEEE International Symposium on Quality Electronic Design (ISQED), San Jose, 2010. 638–645
- 130
Aadithya K V, Demir A, Venugopalan S, et al. SAMURAI: an accurate method for modelling and simulating nonstationary random telegraph noise in SRAMs. In: Proceedings of IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE), Grenoble, 2011. 1–6
- 131
Realov S, Shepard K L. Analysis of random telegraph noise in 45-nm CMOS using on-chip characterization system. IEEE Trans Electron Dev, 2013, 60: 1716–1722
- 132
Grasser T, Kaczer B, Goes W, et al. The paradigm shift in understanding the bias temperature instability: from reaction–diffusion to switching oxide traps. IEEE Trans Electron Dev, 2011, 58: 3652–3666
- 133
Wang R S, Huang R, Kim D-W, et al. New observations on the hot carrier and NBTI reliability of silicon nanowire transistors. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), Washington DC, 2007. 821–824
- 134
Grasser T, Rott K, Reisinger H, et al. A unified perspective of RTN and BTI. In: Proceedings of IEEE International Reliability Physics Symposium (IRPS), Waikoloa, 2014. 4A.5.1–4A.5.7
- 135
Grasser T. Bias Temperature Instability for Devices and Circuits. New York: Springer Science & Business Media, 2013
- 136
Liu C Z, Zou J B, Wang R S, et al. Towards the systematic study of aging induced dynamic variability in nano-MOSFETs: adding the missing cycle-to-cycle variation effects into device-to-device variation. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), Washington DC, 2011. 25.4.1–25.4.4
- 137
Liu C Z, Ren P P, Wang R S, et al. New observations on AC NBTI induced dynamic variability in scaled high-κ/metal-gate MOSFETs: characterization, origin of frequency dependence, and impacts on circuits. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), San Francisco, 2012. 19.5.1–19.5.4
- 138
Ren P P, Wang R S, Ji Z G, et al. New insights into the design for end-of-life variability of NBTI in scaled high-κ/metal-gate technology for the nano-reliability era. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), San Francisco, 2014. 34.1.1–34.1.4
- 139
Zou J B, Wang R S, Gong N B, et al. New insights into AC RTN in scaled high-k/metal-gate MOSFETs under digital circuit operations. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 139–140
- 140
Zou J B, Wang R S, Luo M L, et al. Deep understanding of AC RTN in MuGFETs through new characterization method and impacts on logic circuits. In: Proceedings of Symposium on VLSI Technology (VLSIT), Kyoto, 2013. T186–T187
- 141
Luo M, Wang R Q, Guo S N, et al. Impacts of random telegraph noise (RTN) on digital circuits. IEEE Trans Electron Dev, 2015, 62: 1725–1732
- 142
Ren P P, Xu X Q, Hao P, et al. Adding the missing time-dependent layout dependency into device-circuit-layout co-optimization: new findings on the layout dependent aging effects. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), Washington DC, 2015. 11.7.1–11.7.4
- 143
Wang T C, Hsieh T E, Wang M-T, et al. Stress migration and electromigration improvement for copper dual damascene interconnection. J Electrochem Soc, 2005, 152: G45–G49
- 144
De Orio R L, Ceric H, Selberherr S. Physically based models of electromigration: from Black’s equation to modern TCAD models. Microelectron Reliab, 2010, 50: 775–789
- 145
Sarychev M E, Zhitnikov Y V, Borucki L, et al. General model for mechanical stress evolution during electromigration. J Appl Phys, 1999, 86: 3068–3075
- 146
Pak J, Lim S K, Pan D Z. Electromigration study for multiscale power/ground vias in TSV-based 3-D ICs. IEEE Trans Comput Aided Des Integr Circ Syst, 2014, 33: 1873–1885
- 147
Gibson P, Hogan M, Sukharev V. Electromigration analysis of full-chip integrated circuits with hydrostatic stress. In: Proceedings of IEEE International Reliability Physics Symposium (IRPS), Waikoloa, 2014. IT.2.1–IT.2.7
- 148
Huang X, Yu T, Sukharev V, et al. Physics-based electromigration assessment for power grid networks. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2014. 80: 1–80: 6
- 149
Lienig J. Electromigration and its impact on physical design in future technologies. In: Proceedings of ACM International Symposium on Physical Design (ISPD), Stateline, 2013. 33–40
- 150
Pak J, Yu B, Pan D Z. Electromigration-aware redundant via insertion. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Chiba/Tokyo, 2015. 544–549
- 151
Posser G, Mishra V, Jain O, et al. A systematic approach for analyzing and optimizing cell-internal signal electromigration. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2014. 486–491
- 152
Xie J, Narayanan V, Xie Y. Mitigating electromigration of power supply networks using bidirectional current stress. In: Proceedings of ACM Great Lakes Symposium on VLSI (GLSVLSI), Salt Lake City, 2012. 299–302
- 153
Li D-A, Marek-Sadowska M, Nassif S R. A method for improving power grid resilience to electromigration-caused via failures. IEEE Trans Very Large Scale Integr Syst, 2015, 23: 118–130
- 154
Pak J, Lim S K, Pan D Z. Electromigration-aware routing for 3D ICs with stress-aware EM modeling. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2012. 325–332
- 155
Chen X D, Liao C, Wei T Q, et al. An interconnect reliability-driven routing technique for electromigration failure avoidance. IEEE Trans Depend Secur Comput, 2012, 9: 770–776
- 156
Jiang I H-R, Chang H-Y, Chang C-L. WiT: optimal wiring topology for electromigration avoidance. IEEE Trans Very Large Scale Integr Syst, 2012, 20: 581–592
- 157
Nicolaidis M. Design for soft error mitigation. IEEE Trans Dev Mater Reliab, 2005, 5: 405–418
- 158
Reviriengo P, Bleakly C J, Maestro J A. Structural dmr: a technique for implementation of soft-error-tolerant fir filters. IEEE Trans Circ Syst II, 2011, 58: 512–516
- 159
Campbell K A, Vissa P, Pan D Z, et al. High-level synthesis of error detecting cores through low-cost modulo-3 shadow datapaths. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2015. 161: 6
- 160
Ebrahimi M, Liang C, Asadi H, et al. CLASS: combined logic and architectural soft error sensitivity analysis. In: Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), Yokohama, 2013. 601–607
- 161
Chou H-M, Hsiao M-Y, Chen Y-C, et al. Soft-error-tolerant design methodology for balancing performance, power, and reliability. IEEE Trans Very Large Scale Integr Syst, 2015, 23: 1628–1639
- 162
Sheng W G, Xiao L Y, Mao Z G. Soft error optimization of standard cell circuits based on gate sizing and multiobjective genetic algorithm. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2009. 502–507
- 163
Cho H, Cher C-Y, Shepherd T, et al. Understanding soft errors in uncore components. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2015. 89: 6
- 164
Kiamehr S, Osiecki T, Tahoori M B, et al. Radiation-induced soft error analysis of SRAMs in SOI FinFET technology: a device to circuit approach. In: Proceedings of ACM/IEEE Design Automation Conference (DAC), San Francisco, 2014. 201: 6
- 165
Peng H-K, Wen C H-P, Bhadra J. On soft error rate analysis of scaled CMOS designs: a statistical perspective. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, 2009. 157–163
- 166
Cadence Virtuoso DFM. http://www.cadence.com
- 167
Synopsys IC Validator. http://www.synopsys.com
- 168
Calibre pattern matching. http://www.mentor.com/products
- 169
Capodieci L. Beyond 28nm: new frontiers and innovations in design for manufacturability at the limits of the scaling roadmap. IEEE International Symposium on Quality Electronic Design (ISQED), Santa Clara, 2012
- 170
Abercrombie D. Mastering the magic of multi-patterning. Mentor Graphics White Paper, 2013
- 171
Selim M. Circuit aging tools and reliability verification. In: MOS-AK Workshop, Grenoble, 2015
- 172
Tudor B, Wang J, Liu W D, et al. MOS device aging analysis with HSPICE and CustomSim. Synopsys White Paper, 2011
- 173
RedHawk-SEM. https://www.apache-da.com/products/redhawk/redhawk-sem
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yu, B., Xu, X., Roy, S. et al. Design for manufacturability and reliability in extreme-scaling VLSI. Sci. China Inf. Sci. 59, 061406 (2016). https://doi.org/10.1007/s11432-016-5560-6
Received:
Accepted:
Published:
Keywords
- design for manufacturability
- design for reliability
- VLSI CAD