Skip to main content
Log in

Development of two-dimensional materials for electronic applications

基于二维材料的电子器件的研究进展

  • Review
  • Special Focus on Advanced Microelectronics Technology
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Since the first report of promising electrical properties of Molybdenum disulfide (MoS2) transistors in 2011, two-dimensional materials with unique properties have attracted great attention, and much research on their applications has been carried out. MoS2 and black phosphorus are excellent candidates for advanced applications in future electronics because of their tunable bandgap, high carrier mobility, and ultra-thin bodies. In this review, recent research trends in the application of molybdenum disulfide and black phosphorus to electronic devices are examined. We mainly address mobility improvements, dielectrics engineering, radio frequency applications, and low-frequency noise, all of which are crucial for the development of electronic and optoelectronic devices.

创新点

自从2011年基于单层硫化钼的晶体管成功制备开始,基于二维层状材料沟道的电子器件一直是国际学术界和工业界广泛关注的前沿热点,主要原因有两点:1.二维材料超薄体效应可以最大程度地抑制晶体管中的短沟道效应,在极限器件尺寸下,二维材料晶体管性能将有望超越硅基器件。2.二维材料具有高迁移率、能带可调控、各向异性等特点。本文介绍了近几年二硫化钼和黒磷的研究进展, 主要包括迁移率、高频器件、及低频噪声等方面的内容。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xuan Y, Wu Y Q, Ye P D. High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Dev Lett, 2008, 29: 294–296

    Article  Google Scholar 

  2. Del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479: 317–323

    Article  Google Scholar 

  3. Zhang R, Huang P C, Lin J C, et al. High-mobility Ge p-and n-MOSFETs with 0.7-nm EOT using HfO2/Al2O3/GeOx/Ge gate stacks fabricated by plasma postoxidation. IEEE Trans Electron Dev, 2013, 60: 927–934

    Article  Google Scholar 

  4. Wu H, Si M W, Dong L, et al. Germanium nMOSFETs with recessed channel and S/D: contact, scalability, interface, and drain current exceeding 1 A/mm. IEEE Trans Electron Dev, 2015, 62: 1419–1426

    Article  Google Scholar 

  5. Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5: 487–496

    Article  Google Scholar 

  6. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  7. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  Google Scholar 

  8. Koski K J, Cui Y. The new skinny in two-dimensional nanomaterials. ACS Nano, 2013, 7: 3739–3743

    Article  Google Scholar 

  9. Miro P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem Soc Rev, 2014, 43: 6537–6554

    Article  Google Scholar 

  10. Chhowalla M, Shin H S, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275

    Article  Google Scholar 

  11. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6: 147–150

    Article  Google Scholar 

  12. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7: 699–712

    Article  Google Scholar 

  13. Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898–2926

    Article  Google Scholar 

  14. Ganatra R, Zhang Q. Few-Layer MoS2: a promising layered semiconductor. ACS Nano, 2014, 8: 4074–4099

    Article  Google Scholar 

  15. Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9: 372–377

    Article  Google Scholar 

  16. Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8: 4033–4041

    Article  Google Scholar 

  17. Du H W, Lin X, Xu Z M, et al. Recent developments in black phosphorus transistors. J Mater Chem C, 2015, 3: 8760–8775

    Article  Google Scholar 

  18. Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89: 235319

    Article  Google Scholar 

  19. Ling X, Wang H, Huang S X, et al. The renaissance of black phosphorus. Proc Natl Acad Sci, 2015, 112: 4523–4530

    Article  Google Scholar 

  20. Santos E J G, Kaxiras E. Electric-field dependence of the effective dielectric constant in graphene. Nano Lett, 2013, 13: 898–902

    Article  Google Scholar 

  21. Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  Google Scholar 

  22. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9: 768–779

    Article  Google Scholar 

  23. Jariwala D, Sangwan V K, Lauhon L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8: 1102–1120

    Article  Google Scholar 

  24. Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7: 8261–8283

    Article  Google Scholar 

  25. Yazyev O V, Kis A. MoS2 and semiconductors in the flatland. Mater Today, 2015, 18: 20–30

    Article  Google Scholar 

  26. Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501

    Article  Google Scholar 

  27. Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5: 9934–9938

    Article  Google Scholar 

  28. Late D J, Huang Y-K, Liu B, et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano, 2013, 7: 4879–4891

    Article  Google Scholar 

  29. Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6: 8563–8569

    Article  Google Scholar 

  30. Du Y C, Yang L M, Liu H, et al. Contact research strategy for emerging molybdenum disulfide and other twodimensional field-effect transistors. APL Mater, 2014, 2: 092510

    Article  Google Scholar 

  31. Liu D, Guo Y, Fang L, et al. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl Phys Lett, 2013

    Google Scholar 

  32. Das S, Chen H-Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2012, 13: 100–105

    Article  Google Scholar 

  33. Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Nat Acad Sci, 2005, 102: 10451–10453

    Article  Google Scholar 

  34. Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12: 815–820

    Article  Google Scholar 

  35. Kaasbjerg K, Thygesen K S, Jacobsen KW. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Physl Rev B, 2012, 85: 115317

    Article  Google Scholar 

  36. Kaasbjerg K, Thygesen K S, Jauho A-P. Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys Rev B, 2013, 87: 235312

    Article  Google Scholar 

  37. Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 2013, 102: 173107

    Article  Google Scholar 

  38. Baugher B W H, Churchill H O H, Yang Y F, et al. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett, 2013, 13: 4212–4216

    Article  Google Scholar 

  39. Jena D, Konar A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys Rev Lett, 2007, 98: 136805

    Article  Google Scholar 

  40. Ma N, Jena D. Charge scattering and mobility in atomically thin semiconductors. Phys Rev X, 2014, 4: 011043

    Google Scholar 

  41. Zeng L, Xin Z, Chen S W, et al. Remote phonon and impurity screening effect of substrate and gate dielectric on electron dynamics in single layer MoS2. Appl Phys Lett, 2013, 103: 113505

    Article  Google Scholar 

  42. Singh A K, Hennig R G, Davydov A V, et al. Al2O3 as a suitable substrate and a dielectric layer for n-layer MoS2. Appl Phys Lett, 2015, 107: 053106

    Article  Google Scholar 

  43. Ong Z-Y, Fischetti M V. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Physl Rev B, 2013, 88: 165316

    Article  Google Scholar 

  44. Bao W Z, Cai X H, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl Phys Lett, 2013, 102: 042104

    Article  Google Scholar 

  45. Dean C, Young A, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5: 722–726

    Article  Google Scholar 

  46. Cui X, Lee G-H, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol, 2015, 10: 534–540

    Article  Google Scholar 

  47. Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be? Nano Lett, 2011, 11: 3768–3773

    Article  Google Scholar 

  48. Alam K, Lake R K. Monolayer MoS2 transistors beyond the technology road map. IEEE Trans Electron Dev, 2012, 59: 3250–3254

    Article  Google Scholar 

  49. Liu F, Wang Y, Liu X, et al. A theoretical investigation of orientation dependent transport in monolayer MoS2 transistors at the ballistic limit. IEEE Electron Dev Lett, 2015, 36: 1091–1093

    Article  Google Scholar 

  50. Liu L T, Lu Y, Guo J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans Electron Dev, 2013, 60: 4133–4139

    Article  Google Scholar 

  51. Chang J, Register L F, Banerjee S K. Atomistic full-band simulations of monolayer MoS2 transistors. Appl Phys Lett, 2013, 103: 223509

    Article  Google Scholar 

  52. Yang L M, Majumdar K, Du Y C, et al. High-performance MoS2 field-effect transistors enabled by chloride doping: record low contact resistance (0.5 kohm* µm) and record high drain current (460 µA/µm). In: Proceedings of 2014 Symposium on VLSI Technology: Digest of Technical Papers, Honolulu, 2014. 192–193

    Google Scholar 

  53. Li X F, Yang L M, Si M W, et al. Performance potential and limit of MoS2 transistors. Adv Mater, 2015, 27: 1547–1552

    Article  Google Scholar 

  54. Wu Y Q, Farmer D B, Xia F N, et al. Graphene electronics: materials, devices, and circuits. Proc IEEE, 2013, 101: 1620–1637

    Article  Google Scholar 

  55. Wu Y Q, Lin Y-m, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 2011, 472: 74–78

    Article  Google Scholar 

  56. Wu Y Q, Jenkins K A, Valdes-Garcia A, et al. State-of-the-art graphene high-frequency electronics. Nano Lett, 2012, 12: 3062–3067

    Article  Google Scholar 

  57. Wang H, Yu L L, Lee Y-H, et al. Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. In: Proceedings of the 2012 International Electron Devices Meeting, San Francisco, 2012. 4.6.1–4.6.4

    Google Scholar 

  58. Krasnozhon D, Lembke D, Nyffeler C, et al. MoS2 transistors operating at gigahertz frequencies. Nano Lett, 2014, 14: 5905–5911

    Article  Google Scholar 

  59. Cheng R, Jiang S, Chen Y, et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat Commun, 2014, 5: 5143

    Article  Google Scholar 

  60. Sanne A, Ghosh R, Rai A, et al. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett, 2015, 15: 5039–5045

    Article  Google Scholar 

  61. Hooge F. 1/f noise sources. IEEE Trans Electron Dev, 1994, 41: 1926–1935

    Article  Google Scholar 

  62. Von Haartman M, Mikael S. Low-frequency Noise in Advanced MOS Devices. Berlin: Springer, 2007

    Google Scholar 

  63. Razavi B. A study of phase noise in CMOS oscillators. IEEE J Solid-State Circ, 1996, 31: 331–343

    Article  Google Scholar 

  64. Sangwan V K, Arnold H N, Jariwala D, et al. Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett, 2013, 13: 4351–4355

    Article  Google Scholar 

  65. Kwon H-J, Kang H, Jang J, et al. Analysis of flicker noise in two-dimensional multilayer MoS2 transistors. Appl Phys Lett, 2014, 104: 083110

    Article  Google Scholar 

  66. Renteria J, Samnakay R, Rumyantsev S L, et al. Low-frequency 1/f noise in MoS2 transistors: relative contributions of the channel and contacts. Appl Phys Lett, 2014, 104: 153104

    Article  Google Scholar 

  67. Rumyantsev S L, Jiang C L, Samnakay R, et al. 1/f noise characteristics of MoS2 thin-film transistors: comparison of single and multilayer structures. IEEE Electron Dev Lett, 2015, 36: 517–519

    Article  Google Scholar 

  68. Keyes R W. The electrical properties of black phosphorus. Phys Rev, 1953, 92: 580–584

    Article  Google Scholar 

  69. Morita A. Semiconducting black phosphorus. Appl Phys A, 1986, 39: 227–242

    Article  Google Scholar 

  70. Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14: 3347–3352

    Article  Google Scholar 

  71. Buscema M, Groenendijk D J, Steele G A, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat Commun, 2014, 5: 4651

    Article  Google Scholar 

  72. Zhu W N, Yogeesh M N, Yang S X, et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett, 2015, 15: 1883–1890

    Article  Google Scholar 

  73. Fei R X, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 2014, 14: 2884–2889

    Article  Google Scholar 

  74. Hong T, Chamlagain B, Lin W Z, et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 2014, 6: 8978–8983

    Article  Google Scholar 

  75. Ong Z-Y, Cai Y Q, Zhang G, et al. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J Phys Chem C, 2014, 118: 25272–25277

    Article  Google Scholar 

  76. Ong Z-Y, Zhang G, Zhang Y W. Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene. J Appl Phys, 2014, 116: 214505

    Article  Google Scholar 

  77. Qiao J S, Kong X H, Hu Z-X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5: 4475

    Google Scholar 

  78. Ge S F, Li C K, Zhang Z M, et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett, 2015, 15: 4650–4656

    Article  Google Scholar 

  79. Jiang J-W. Thermal conduction in single-layer black phosphorus: highly anisotropic? Nanotechnology, 2015, 26: 055701

    Article  Google Scholar 

  80. Lu W L, Ma X M, Fei Z, et al. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements. Appl Phys Lett, 2015, 107: 021906

    Article  Google Scholar 

  81. Wang X M, Jones A M, Seyler K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nanotechnol, 2015, 10: 517–521

    Article  Google Scholar 

  82. Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5: 4458

    Google Scholar 

  83. Du Y C, Liu H, Deng Y X, et al. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano, 2014, 8: 10035–10042

    Article  Google Scholar 

  84. Haratipour N, Robbins M C, Koester S J. Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electron Dev Lett, 2015, 36: 411–413

    Article  Google Scholar 

  85. Das S, Demarteau M, Roelofs A. Ambipolar phosphorene field effect transistor. ACS Nano, 2014, 8: 11730–11738

    Article  Google Scholar 

  86. Perello D J, Chae S H, Song S, et al. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat Commun, 2015, 6: 7809

    Article  Google Scholar 

  87. Liu H, Neal A T, Si M W, et al. The effect of dielectric capping on few-layer phosphorene transistors: tuning the schottky barrier heights. IEEE Electron Dev Lett, 2014, 35: 795–797

    Article  Google Scholar 

  88. Padilha J E, Fazzio A, da Silva A J R. van der Waals heterostructure of phosphorene and graphene: tuning the schottky barrier and doping by electrostatic gating. Phys Rev Lett, 2015, 114: 066803

    Article  Google Scholar 

  89. Kamalakar M V, Madhushankar B N, Dankert A, et al. Low schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small, 2015, 11: 2209–2216

    Article  Google Scholar 

  90. Joshua O I, Gary A S, Herre S J V D Z, et al. Environmental instability of few-layer black phosphorus. 2D Mater, 2015, 2: 011002

    Article  Google Scholar 

  91. Wood J D, Wells S A, Jariwala D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett, 2014, 14: 6964–6970

    Article  Google Scholar 

  92. Boukhvalov D W, Rudenko A N, Prishchenko D A, et al. Chemical modifications and stability of phosphorene with impurities: a first principles study. Phys Chem Chem Phys, 2015, 17: 15209–15217

    Article  Google Scholar 

  93. Wang Z H, Islam A, Yang R, et al. Environmental, thermal, and electrical susceptibility of black phosphorus field effect transistors. J Vac Sci Technol B, 2015, 33: 052202

    Article  Google Scholar 

  94. Saito Y, Iwasa Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano, 2015, 9: 3192–3198

    Article  Google Scholar 

  95. Kim J-S, Liu Y N, Zhu W N, et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 2015, 5: 8989

    Article  Google Scholar 

  96. Favron A, Gaufres E, Fossard F, et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater, 2015, 14: 826–832

    Article  Google Scholar 

  97. Ziletti A, Carvalho A, Campbell D K, et al. Oxygen defects in phosphorene. Phys Rev Lett, 2015, 114: 046801

    Article  Google Scholar 

  98. Zhu H, McDonnell S, Qin X Y, et al. Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS Appl Mater Interface, 2015, 7: 13038–13043

    Article  Google Scholar 

  99. Cai Y Q, Zhang G, Zhang Y-W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J Phys Chem C, 2015, 119: 13929–13936

    Article  Google Scholar 

  100. Chen X L, Wu Y Y, Wu Z F, et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun, 2015, 6: 7315

    Article  Google Scholar 

  101. Doganov R A, Koenig S P, Yeo Y, et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl Phys Lett, 2015, 106: 083505

    Article  Google Scholar 

  102. Doganov R A, O’Farrell E C T, Koenig S P, et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat Commun, 2015, 6: 6647

    Article  Google Scholar 

  103. Gillgren N, Wickramaratne D, Shi Y M, et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater, 2015, 2: 011001

    Article  Google Scholar 

  104. Li L K, Ye G J, Tran V, et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat Nanotechnol, 2015, 10: 608–613

    Article  Google Scholar 

  105. Tayari V, Hemsworth N, Fakih I, et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat Commun, 2015, 6: 7702

    Article  Google Scholar 

  106. Yasaei P, Kumar B, Foroozan T, et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv Mater, 2015, 27: 1887–1892

    Article  Google Scholar 

  107. Kang J, Wood J D, Wells S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9: 3596–3604

    Article  Google Scholar 

  108. Yang Z B, Hao J H, Yuan S G, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv Mater, 2015, 27: 3748–3754

    Article  Google Scholar 

  109. Li X S, Deng B C, Wang X M, et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater, 2015, 2: 031002

    Article  Google Scholar 

  110. Wang H, Wang X M, Xia F N, et al. Black phosphorus radio-frequency transistors. Nano Lett, 2014, 14: 6424–6429

    Article  Google Scholar 

  111. Vandamme L, Li X S, Rigaud D. 1/f noise in MOS devices, mobility or number fluctuations? IEEE Trans Electron Dev, 1994, 41: 1936–1945

    Article  Google Scholar 

  112. Na J H, Lee Y T, Lim J A, et al. Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano, 2014, 8: 11753–11762

    Article  Google Scholar 

  113. Li X F, Du Y C, Si M W, et al. Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. Nanoscale, 2016, 8: 3572–3578

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gao, T. & Wu, Y. Development of two-dimensional materials for electronic applications. Sci. China Inf. Sci. 59, 061405 (2016). https://doi.org/10.1007/s11432-016-5559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-5559-z

Keywords

关键词

Navigation