Sinc interpolation based method for compensation of ionospheric dispersion effects on BOC signals with high subcarrier rate



Binary Offset Carrier (BOC) signals with high subcarrier rate such as AltBOC(15,10) and cos-BOC(15,2.5) have been adopted for the next generation of Global Navigation Satellite System (GNSS) to make full use of the allocated spectrum. However, the two main lobes of the BOC signals are tremendously separated in the frequency spectrum and the group delay of the two lobes are greatly dispersed due to ionospheric dispersion. The signals will suffer extremely severe distortion caused by the group delay dispersion including waveform ripples, power losses and correlation function asymmetries. In this paper, a novel time domain sinc interpolation based ionospheric dispersion compensation method is proposed to eliminate the distortion to the BOC signals. Firstly, the time domain model of BOC signal under the dispersive ionosphere is developed. Afterwards, based on the model, the two signal main lobes are aligned by sinc interpolation so that the ionospheric dispersion effects are almost mitigated. Taking Galileo E5 AltBOC(15,10) signal as an example, the performance of the proposed method is evaluated by simulation and test. The results show that the proposed method is able to more effectively compensate the ionospheric dispersion with fewer computational loads versus existing methods.



在下一代全球卫星导航系统中使用的高速率子载波BOC信号具有两个分离的频率主瓣。电离层色散效应使这两个主瓣的群延迟发生 了较大的分离, 导致卫星导航信号发生畸变。本文提出一种基于时域sinc插值的电离层色散效应补偿方法。根据文中设计的电离层色散效 应下BOC信号时域模型, 该方法利用sinc插值运算实现BOC信号两个主瓣群延迟同步, 消除电离层色散对BOC信号接收的影响。以伽利略E5 AltBOC(15,10)信号为例, 本文通过仿真和实测对该方法进行了评估。结果表明该方法相比于目前存在的方法计算量更小且可以更加有效地 补偿电离层色散效应。

This is a preview of subscription content, access via your institution.


  1. 1

    Unite Nations. Current and planned global and regional navigation satellite systems and satellite-based augmentations systems. In: Proceeding of the International Committee on Global Navigation Satellite Systems Provider’s Forum, New York, 2010. 15–40

  2. 2

    Betz J W. Binary offset carrier modulations for radio navigation. Navigation, 2002, 48: 227–246.

    Article  Google Scholar 

  3. 3

    Galileo Project Office. The GIOVE-A+B signal in space interface control document. European Space Agency, 2008

  4. 4

    Christie J R I, Parkinson B W, Enge P K. The effects of the ionosphere and C/A frequency on GPS signal shape: considerations for GNSS-2. In: Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation, Kansas City, 1996. 647–653

    Google Scholar 

  5. 5

    Yao Z, Lu M Q, Feng Z M. Unambiguous sine-phased binary offset carrier modulated signal acquisition technique. IEEE Trans Wirel Commun, 2010, 9: 577–580

    Article  Google Scholar 

  6. 6

    Ren J W, Jia W M, Chen H H, et al. Unambiguous tracking method for alternative binary offset carrier modulated signals based on dual estimate loop. IEEE Commun Lett, 2012, 16: 1737–1740

    Article  Google Scholar 

  7. 7

    Borio D. Double phase estimator: new unambiguous binary offset carrier tracking algorithm. IET Radar Sonar Nav, 2014, 8: 729–741

    Article  Google Scholar 

  8. 8

    Martin N, Leblond V, Guillotel G, et al. BOC(x,y) signal acquisition techniques and performances. In: Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, 2003. 188–198

    Google Scholar 

  9. 9

    Gao G, Datta-Barua S, Walter T, et al. Ionosphere effects for wideband GNSS signals. In: Proceedings of the 63rd Annual Meeting of The Institute of Navigation, Cambridge, 2007. 147–155

    Google Scholar 

  10. 10

    Guo N Y, Kou Y H, Zhao Y, et al. An all-pass filter for compensation of ionospheric dispersion effects on wideband GNSS signals. GPS Solut, 2014, 18: 625–637

    Article  Google Scholar 

  11. 11

    Klobuchar J A. Ionospheric time-delay algorithm for single frequency GPS users. IEEE Trans Aerosp Electron Syst, 1989, 23: 325–331

    Google Scholar 

  12. 12

    Lestraquit L, Artaud G, Issler J L. AltBOC for dummies or everything you always wanted to know about AltBOC. In: Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation, Savannah, 2008. 961–970

    Google Scholar 

  13. 13

    Kaplan E D, Hegarty C. Understanding GPS: Principles and Applications. 2nd ed. Norwood: Artech House Publishers, 2005. 164–179, 233–234

    Google Scholar 

  14. 14

    Parkinson B, Spilker J J. Global Positioning System: Theory and Applications. Volume I. Washington DC: American Institute of Aeronautics and Astronautics, 1996. 489–490

    Book  Google Scholar 

  15. 15

    Rebeyrol E, Macabiau C, Lestarquit L, et al. BOC power spectrum densities. In: Proceedings of the 2005 National Technical Meeting of The Institute of Navigation, San Diego, 2005. 769–778

    Google Scholar 

  16. 16

    Radicella S M, Nava B. NeQuick model: origin and evolution. In: Proceedings of the International Symposium on Antennas Propagation and EM Theory (ISAPE), Guangzhou, 2010. 422–425

    Google Scholar 

  17. 17

    Dooley S R, Nandi A K. Adaptive subsample time delay estimation using Lagrange interpolators. IEEE Signal Process Lett, 1999, 6: 65–67

    Article  Google Scholar 

  18. 18

    Schanze T. Sinc interpolation of discrete periodic signals. IEEE Trans Signal Process, 1995, 43: 1502–1503

    Article  Google Scholar 

  19. 19

    Cavicchi T J. DFT time domain interpolation. IEE Proc-F Radar Signal Proc, 1992, 139: 207–211

    Article  Google Scholar 

  20. 20

    Dooley S R, Asoke K N. Notes on the Interpolation of discrete periodic signals using sinc function related approaches. IEEE Trans Signal Process, 2000, 48: 1201–1203

    MathSciNet  Article  MATH  Google Scholar 

  21. 21

    Lehmann T M, Gonner C, Spitzer K. Survey: interpolation methods in medical image processing. IEEE Trans Med Imag, 1990, 18: 1049–1075

    Article  Google Scholar 

  22. 22

    Hodgart M, Blunt P. Dual estimate receiver of binary offset carrier modulated signals for global navigation satellite systems. Electron Lett, 2007, 43: 1–2

    Article  Google Scholar 

  23. 23

    Misra P, Enge P. Global Positioning System: Signals, Measurements, And Performance. Lincoln: Ganga-Jamuna Press, 2001. 434–442, 482–492, 148–151

    Google Scholar 

  24. 24

    Kunitsyn V, Kurbatov G, Yasyukevich Y, et al. Investigation of SBAS L1/L5 signals and their application to the ionospheric TEC studies. IEEE Geosci Remote Sens Lett, 2015, 12: 547–551

    Article  Google Scholar 

  25. 25

    Julien O, Macabiau C, Issler J L. Ionospheric delay estimation strategies using Galileo E5 signals only. In: Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation, Savannah, 2009. 3128–3141

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruan, H., Zhang, L. & Long, T. Sinc interpolation based method for compensation of ionospheric dispersion effects on BOC signals with high subcarrier rate. Sci. China Inf. Sci. 59, 102311 (2016).

Download citation


  • ionospheric dispersion
  • sinc interpolation
  • BOC
  • code tracking bias
  • high subcarrier rate


  • 电离层色散
  • sinc 插值
  • BOC
  • 码跟踪偏差
  • 高子载波速率