Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Hybrid followee recommendation in microblogging systems

微博系统中一种混合关注对象推荐方法

  • 186 Accesses

  • 8 Citations

Abstract

Followee recommendation plays an important role in information sharing over microblogging plat-forms. Existing followee recommendation schemes adopt either content relevance or social information for followee ranking, suffering poor performance. Based on the observation that microblogging systems have dual roles of social network and news media platform, we propose a novel followee recommendation scheme that takes into account the information sources of both tweet contents and the social structures. We set up a linear weighted model to combine the two factors and further design a simulated annealing algorithm to automatically assign the weights of both factors in order to achieve an optimized combination of them. We conduct comprehensive experiments on real-world datasets collected from Sina Weibo, the largest microblogging system in China. The results demonstrate that our scheme provides a much more accurate followee recommendation for a user compared to existing schemes.

创新点

关注对象推荐在微博平台信息共享中发挥了重要的作用。现有推荐方法主要基于内容相关性或社交图谱信息对关注用户对象进行排序, 难以获得理想的性能。观察到微博系统同时是社交网络和社交媒体的双重属性, 提出一种新颖的用户关注对象推荐方法。该方法同时考虑了微博推文和社交结构两种信息源, 建立了一种线性加权模型将两种因素结合起来, 并设计了一种模拟退火算法用于自动对两种因素的权重组合进行优化求解。基于从新浪微博系统中采集的真实系统数据进行了全面的实验评估。结果证明本方法相对于现有方法提供了更为精确的微博关注对象推荐。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Chen H C, Chen A L P. A music recommendation system based on music data grouping and user interests. In: Proceedings of ACM Conference on Information and Knowledge Management (CIKM), Atlanta, 2001. 231–238

  2. 2

    Devi M K K, Venkatesh P. Smoothing approach to alleviate the meager rating problem in collaborative recommender systems. Future Gener Comput Syst, 2013, 29: 262–270

  3. 3

    Guan Z, Wang C, Bu J, et al. Document recommendation in social tagging services. In: Proceedings of International Conference on World Wide Web (WWW), Raleigh, 2010. 391–400

  4. 4

    Tserpes K, Aisopos F, Kyriazis D, et al. A recommender mechanism for service selection in service-oriented environments. Future Gener Comput Syst, 2012, 28: 1285–1294

  5. 5

    Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of International Conference on Uncertainty in Artificial Intelligence, Madison, 1998. 43–52

  6. 6

    Hannon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches. In: Proceedings of ACM Conference on Recommender Systems, Barcelona, 2010. 199–206

  7. 7

    Anagnostopoulos A, Becchetti L, Castillo C, et al. Online team formation in social networks. In: Proceedings of International Conference on World Wide Web (WWW), Lyon, 2012. 839–848

  8. 8

    Tang J, Sun J, Wang C, et al. Social influence analysis in large-scale networks. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris, 2009. 807–816

  9. 9

    Zhang Z. Community structure detection in social networks based on dictionary learning. Sci China Inf Sci, 2013, 56: 078103

  10. 10

    Armentano M G, Godoy D, Amandi A. Followee recommendation based on text analysis of micro-blogging activity. Inform Syst, 2013, 38: 1116–1127

  11. 11

    Kwak H, Lee C, Park H, et al. What is twitter, a social network or a news media? In: Proceedings of International Conference on World Wide Web (WWW), Raleigh, 2010. 591–600

  12. 12

    Konstan J A, Miller B N, Maltz D, et al. Grouplens: applying collaborative filtering to usenet news. Commun ACM, 1997, 40: 77–87

  13. 13

    Balabanovi M, Shoham Y. Fab: content-based, collaborative recommendation. Commun ACM, 1997, 40: 66–72

  14. 14

    Kautz H, Selman B, Shah M. Referral web: combining social networks and collaborative filtering. Commun ACM, 1997, 40: 63–65

  15. 15

    Rashid A M, Lam S K, Karypis G, et al. Clustknn: a highly scalable hybrid model-and memory-based cf algorithm. In: Proceedings of KDD Workshop on Web Mining and Web Usage Analysis, Philadelphia, 2006

  16. 16

    Chan S, Jin Q. Collaboratively shared information retrieval model for e-learning. In: Proceedings of International Conference on Advances in Web based Learning, Penang, 2006. 259–266

  17. 17

    Pazzani M, Muramatsu J, Billsus D. Syskill and webert: identifying interesting web sites. In: Proceedings of National Conference on Artificial Intelligence, Portland, 1996. 54–61

  18. 18

    Mooney R J, Roy L. Content-based book recommending using learning for text categorization. In: Proceedings of ACM Conference on Digital Libraries, San Antonio, 2000. 195–204

  19. 19

    Kywe S M, Lim E P, Zhu F. A survey of recommender systems in twitter. In: Proceedings of International Conference Social Informatics, Lausanne, 2012. 420–433

  20. 20

    Easley D, Kleinberg J. Networks, Crowds, and Markets. Cambridge: Cambridge University Press, 2010

  21. 21

    Armentano M G, Godoy D, Amandi A. A topology-based approach for followees recommendation in twitter. In: Proceedings of IJCAI Workshop on Intelligent Techniques for Web Persinalization and Recommender Systems, Barcelona, 2011. 144–153

  22. 22

    Chechev M, Georgiev P. A multi-view content-based user recommendation scheme for following users in twitter. In: Proceedings of International Conference Social Informatics, Lausanne, 2012. 434–447

  23. 23

    Kywe S M, Hoang T A, Lim E P, et al. On recommending hashtags in twitter networks. In: Proceedings of International Conference Social Informatics, Lausanne, 2012. 337–350

  24. 24

    Yen N, Shih T, Jin Q, et al. Automatic learning sequence template generation for educational reuse. In: Proceedings of IEEE International Conference on Granular Computing, Kaohsiung, 2011. 259–266

  25. 25

    Hill W, Terveen L. Using frequency-of-mention in public conversations for social filtering. In: Proceedings of ACM Conference on Computer Supported Cooperative Work (CSCW), Boston, 1996. 106–112

  26. 26

    Andersen R, Borgs C, Chayes J, et al. Trust-based recommendation systems: an axiomatic approach. In: Proceedings of International Conference on World Wide Web (WWW), Bejing, 2008. 199–208

  27. 27

    Shardanand U, Maes P. Social information filtering: algorithms for automating word of mouth. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems, Denver, 1995. 210–217

  28. 28

    Chen J, Nairn R, Nelson L, et al. Short and tweet: experiments on recommending content from information streams. In: Proceedings of International Conference on Human Factors in Computing Systems (CHI), Atlanta, 2010. 1185–1194

  29. 29

    Armentano M G, Godoy D, Amandi A. Topology-based recommendation of users in micro-blogging communities. J Comput Sci Technol, 2012, 27: 624–634

  30. 30

    Golder S A, Yardi S, Marwick A, et al. A structural approach to contact recommendations in online social networks. In: Proceedings of Workshop on Search in Social Media, Boston, 2009

  31. 31

    Assent I. Actively building private recommender networks for evolving reliable relationships. In: Proceedings of IEEE International Conference on Data Engineering (ICDE), Shanghai, 2009. 1611–1614

  32. 32

    Xu T, Chen Y, Jiao L, et al. Scaling microblogging services with divergent traffic demands. In: Proceedings of International Middleware Conference (Middleware), Lisbon, 2011. 20–40

  33. 33

    Naveed N, Gottron T, Kunegis J, et al. Bad news travel fast: a content-based analysis of interestingness on twitter. In: Proceedings of ACM Conference in WebSci, Koblenz, 2011. 1–7

  34. 34

    Salton G, Buckley C. Term-weighting approaches in automatic text retrieval. Inform Process Manag, 1988, 24: 513–523

  35. 35

    Garcia R, Amatriain X. Weighted content based methods for recommending connections in online social networks. In: Proceedings of Workshop on Recommender Systems and the Social Web, Hong Kong, 2010. 68–71

  36. 36

    Kirkpatrick S, Jr D G, Vecchi M P. Optimization by simmulated annealing. Science, 1983, 220: 671–680

  37. 37

    Nie Z, Zhang Y, Wen J R, et al. Object-level ranking: bringing order to web objects. In: Proceedings of International World Wide Web Conference (WWW), Chiba, 2005. 567–574

  38. 38

    Wen X, Shao L, Fang W, et al. Efficient feature selection and classification for vehicle detection. IEEE Trans Circ Syst Video Technol, 2015, 25: 508–517

  39. 39

    Zhang H, Wu Q J, Nguyen T M, et al. Synthetic aperture radar image segmentation by modified student’s t-mixture model. IEEE Trans Geosci Rem Sens, 2014, 52: 4391–4403

  40. 40

    Gu B, Sheng V S. Feasibility and finite convergence analysis for accurate on-line-support vector machine. IEEE Trans Neural Netw Learn Syst, 2013, 24: 1304–1315

  41. 41

    Li J, Li X, Yang B, et al. Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inform Forens Secur, 2015, 10: 507–518

  42. 42

    Blei D, Jordan M A Y. Latent dirichlet allocation. J Mach Learn Res, 2003, 40: 993–1022

  43. 43

    Wu K, Xiao J, Yi Y, et al. CSI-based indoor localization. IEEE Trans Parall Distrib Syst, 2013, 24: 1300–1309

  44. 44

    Li H, Wu K, Zhang Q, et al. CUTS: improving channel utilization in both time and spatial domains in wlan. IEEE Trans Parall Distrib Syst, 2014, 25: 1413–1423

  45. 45

    Voorhees E M. Overview of trec 2003. In: Proceedings of Text Retrieval Conference (TREC), Gaithersburg, 2003. 1–13

  46. 46

    Fu Z, Sun X, Liu Q, et al. Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun, 2015, 98: 190–200

Download references

Author information

Correspondence to Hanhua Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Jin, H. & Cui, X. Hybrid followee recommendation in microblogging systems. Sci. China Inf. Sci. 60, 012102 (2017). https://doi.org/10.1007/s11432-016-5551-7

Download citation

Keywords

  • online social networks
  • microblogging
  • followee recommendation
  • simulated annealing
  • ranking

关键词

  • 在线社交网络
  • 微博
  • 关注对象推荐
  • 模拟退火
  • 排序