Intelligent CPSS and its application to health care computing




由于当前动力学模型中存在水动力误差和模型误差, 水下蛇形机器人控制器设计一直是一个挑战。 为了应对这一挑战, 本文提出了一种应用在水下蛇形机器人上的, 基于动力学模型的自适应控制方案, 该方案旨在实现关节角跟踪的自适应控制和运动方向控制。 MATLAB 仿真结果证明 L1 自适应控制器能够有效处理不同类型的不确定性 (模型误差和时变噪音), 且同时实现了关节角跟踪和快速自适应。 修正的L1自适应控制器 (增加辅助偏差信号) 能快速且稳定的改变水下蛇形机器人的运动方向。

This is a preview of subscription content, access via your institution.


  1. 1

    Wang F Y. The emergence of intelligent enterprises: from CPS to CPSS. IEEE Intell Syst, 2010; 25: 85–88

    Article  Google Scholar 

  2. 2

    Manyika J, Chui M, Bughin J, et al. Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy. Technical Report. McKinsey Global Institute. 2013

    Google Scholar 

  3. 3

    Bielza C, Moral S, Salmern A. Recent advances in probabilistic graphical models. Int J Intell Syst, 2015; 30: 207–208

    Article  Google Scholar 

  4. 4

    Dietterich T G, Domingos P, Getoor L, et al. Structured machine learning: the next ten years. Mach Learn, 2008; 73: 3–23

    Article  Google Scholar 

  5. 5

    Hussein D, Park S, Han S, et al. Dynamic social structure of things: a contextual approach in CPSS. IEEE Int Comput, 2015; 19: 12–20

    Article  Google Scholar 

  6. 6

    Bleiholder J, Naumann F. Data fusion. ACM Comput Surv, 2008; 41: 1–41

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Bo Yang or Shang Gao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Yang, B., Gao, S. et al. Intelligent CPSS and its application to health care computing. Sci. China Inf. Sci. 59, 050103 (2016).

Download citation


  • 水下蛇形机器人
  • 自适应控制
  • 简化系统
  • 分段常数律
  • 欠驱动机器人