Biclique cryptanalysis using balanced complete bipartite subgraphs

This is a preview of subscription content, access via your institution.


  1. 1

    Bogdanov A, Khovratovich D, Rechberger C. Biclique cryptanalysis of the full AES. In: Lee D, Wang X, eds. Advances in Cryptology-ASIACRYPT. Berlin: Springer, 2011. 344–371

    Google Scholar 

  2. 2

    Wang Y, Wu W, Yu X. Biclique cryptanalysis of reduced-round Piccolo block cipher. In: Ryan M, Smyth B, Wang G, eds. Information Security Practice and Experience. Berlin: Springer, 2012. 337–352

    Google Scholar 

  3. 3

    Shibutani K, Isobe T, Hiwatari H, et al. Piccolo: an ultra-lightweight blockcipher. In: Preneel B, Takagi T, eds. Cryptographic Hardware and Embedded Systems-CHES. Berlin: Springer, 2011. 342–357

    Google Scholar 

  4. 4

    Song J, Lee K, Lee H. Biclique cryptanalysis on lightweight block cipher: HIGHT and Piccolo. Int J Comput Math, 2013; 90: 2564–2580

    Article  MATH  Google Scholar 

  5. 5

    Abed F, Forler C, List E, et al. A framework for automated independent-biclique cryptanalysis. In: Moriai S, ed. Fast Software Encryption. Berlin: Springer, 2014. 561–581

    Google Scholar 

  6. 6

    Shakiba M, Dakhilalian M, Mala H. Non-isomorphic biclique cryptanalysis and its application to full-round mCrypton. IACR Cryptology ePrint Archive, 2013, 2013: 141

    Google Scholar 

  7. 7

    Lim C H, Korkishko T. mCrypton-a lightweight block cipher for security of low-cost RFID tags and sensors. In: Song J, Kwon T, Yung M, eds. Information Security Applications. Berlin: Springer, 2005. 243–258

    Google Scholar 

  8. 8

    Ahmadi S, Ahmadian Z, Mohajeri J, et al. Low-data complexity biclique cryptanalysis of block ciphers with application to Piccolo and HIGHT. IEEE Trans Inf Foren Secur, 2014; 9: 1641–1652

    Article  Google Scholar 

  9. 9

    Huang J L, Lai X J. What is the effective key length for a block cipher: an attack on every practical block cipher. Sci China Inf Sci, 2014, 57: 072110

    MATH  Google Scholar 

  10. 10

    Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman, 1979

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zheng Gong.

Additional information

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, Z., Liu, S., Wen, Y. et al. Biclique cryptanalysis using balanced complete bipartite subgraphs. Sci. China Inf. Sci. 59, 049101 (2016).

Download citation


  • Bipartite Graph
  • Block Cipher
  • Cryptology ePrint Archive
  • Fast Software Encryption
  • MITM Attack