Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transceiver designs with matrix-version water-filling architecture under mixed power constraints

混合功率约束条件下, 矩阵版注水结构的收发机的设计

Abstract

In this paper, we investigate the multiple-input multiple-output (MIMO) transceiver design under an interesting power model named mixed power constraints. In the considered power model, several antenna subsets are constrained by sum power constraints while the other antennas are subject to per-antenna power constraints. This kind of transceiver designs includes both the transceiver designs under sum power constraint and per-antenna power constraint as its special cases. This kind of designs is of critical importance for distributed antenna systems (DASs) with heterogeneous remote radio heads (RRHs) such as cloud radio access networks (C-RANs). In our work, we try to solve the optimization problem in an analytical way instead of using some famous software packages e.g., CVX or SeDuMi. In our work, to strike tradeoffs between performance and complexity, both iterative and non-iterative solutions are proposed. Interestingly the non-iterative solution can be interpreted as a matrix-version water-filling solution extended from the well-known and extensively studied vector version. Finally, simulation results demonstrate the accuracy of our theoretical results.

摘要

创新点

本文中, 我们研究了在混合功率约束条件下, 多输入输出系统的收发机的设计问题。我们考虑的功率模型中, 部分天线的发送功率服从和功率约束, 而其他的天线功率约束服从单天线功率约束。这种情况下, 收发机的设计既包括和功率约束条件下的收发机的设计, 又包括单天线约束条件下的收发机的设计。这种设计在异构的分布式天线系统中非常重要, 比如CRAN网络中。在我们的工作中, 我们尝试着以一种解析的方式求解优化问题, 而不是利用一些有名的软件包, 比如CVX或SeDuMi。另外, 为了在性能和复杂度之间寻求一个好的折中, 我们提出了迭代的和非迭代的算法。有趣的是, 非迭代的解可以理解为一种矩阵版的注水解, 这是从著名的矢量版的注水解扩展而来的。最后, 仿真结果说明了理论分析的准确性。

This is a preview of subscription content, log in to check access.

References

  1. 1

    Telatar I E. Capacity of muti-antenna Gaussian channels. European Trans Commun, 1999, 10: 585–595

  2. 2

    Palomar D P, Cioffi J M, Lagunas M A. Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Trans Signal Process, 2003, 51: 2381–2401

  3. 3

    Scaglione A, Stoica P, Barbarossa S, et al. Optimal designs for space-time linear precoders and decoders. IEEE Trans Signal Process, 2002, 50: 1051–1064

  4. 4

    Sampath H, Stoica P, Paulraj A. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion. IEEE Trans Commun, 2001, 49: 2198–2206

  5. 5

    Yang J, Roy S. On joint transmitter and receiver optimization for mutiple-input-mutiple-output (MIMO) transmission systems. IEEE Trans Commun, 1994, 42: 3221–3231

  6. 6

    Yu W, Lan T. Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Trans Signal Process, 2007, 55: 2646–2660

  7. 7

    Tolli A, Codreanu M, Juntti M. Linear multiuser MIMO transceiver design with quality of service and per-antenna power constraints. IEEE Trans Signal Process, 2008, 56: 3049–3055

  8. 8

    Zhu H L, Wang J Z. Radio resource allocation in multiuser distributed antenna systems. IEEE J Sel Areas Commun, 2013, 31: 2058–2066

  9. 9

    Mai V. MIMO capacity with per-antenna power constraint. IEEE Trans Commun, 2011, 59: 1268–1274

  10. 10

    Chen X, Xu X D, Tao X F. Energy efficient power allocation in generalized distributed antenna system. IEEE Commun Lett, 2012, 16: 1022–1025

  11. 11

    Zhu H L, Karachontzitis S, Toumpakaris D. Low complexity resource allocation and its application to distributed antenna systems [Coordinated and Distributed MIMO]. IEEE Wirel Commun Mag, 2010, 17: 44–50

  12. 12

    Chen H H, Gershman A B, ShahbazPanahi S. Filter-and-forward distributed beamforming in relay networks with frequency selective fading. IEEE Trans Signal Process, 2010, 58: 1251–1262

  13. 13

    Luan T, Gao F, Zhang X. Joint resource scheduling for relay-assisted broadband cognitive radio networks. IEEE Trans Wirel Commun, 2012, 11: 3090–3100

  14. 14

    Li N, Fei Z S, Xing C W, et al. Robust low-complexity MMSE precoding algorithm for cloud radio access networks. IEEE Commun Lett, 2014, 18: 773–776

  15. 15

    Wang H-M, Yin Q Y, Xia X-G. Distributed beamforming for physical-layer security of two-way relay networks. IEEE Trans Signal Process, 2012, 60: 3532–3545

  16. 16

    Gao F F, Jiang B, Gao X-Q, et al. Superimposed training based channel estimation for OFDM modulated amplifyand- forward relay networks. IEEE Trans Commun, 2011, 59: 2029–2039

  17. 17

    China Mobile Research Institue. C-RAN White Paper. v2.5. http://labs.chinamobile.com/cran/2014/06/16/c-ranwhite- paper-3-0/. 2012

  18. 18

    Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

  19. 19

    Palomar D P, Fonollosa J R. Practical algorithms for a family of waterfilling solutions. IEEE Trans Signal Process, 2005, 53: 686–695

  20. 20

    Hansen P C. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. In: SIAM Monographs on Mathematical Modeling and Computation. Philadelphia: Society for Industrial and Applied Mathematics, 1998

  21. 21

    Xing C W, Li W Z, Ma S D, et al. A matrix field weighted mean-square-error model for MIMO transceiver design. IEEE Commun Lett, 2013, 17: 1652–1655

  22. 22

    Zhang Z S, Long K P, Wang J. Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey. IEEE Wirel Commun, 2013, 20: 36–42

  23. 23

    Zhu F, Gao F, Yao M, et al. Joint information- and jamming-beamforming for physical layer security with full duplex base station. IEEE Trans Signal Process, 2014, 62: 6391–6401

  24. 24

    Zhang Z, Long K, Wang J, et al. On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Commun Surv Tut, 2014, 16: 513–537

  25. 25

    Liu P, Gazor S, Kim I M. A practical differential receiver for amplify-and-forward relaying. IEEE Wirel Commun Lett, 2014, 3: 349–352

  26. 26

    Liu P, Kim I M, Gazor S. Maximum-likelihood detector for differential amplify-and-forward cooperative networks. IEEE Trans Veh Tech, 2013, 62: 4097–4104

  27. 27

    Liu P, Gazor S, Kim I M, et al. Noncoherent amplify-and-forward cooperative networks: robust detection and performance analysis. IEEE Trans Commun, 2013, 61: 3644–3659

  28. 28

    Xing C W, Ma S D, Fei Z S, et al. A Generalt robust linear transceiver design for multi-hop amplify-and-forward MIMO relaying systems. IEEE Trans Signal Process, 2013, 61: 1196–1209

  29. 29

    Wiesel A, Eldar Y C, Shamai S. Zero-forcing precoding and generalized inverses. IEEE Trans Signal Process, 2008, 56: 4409–4418

  30. 30

    Grant M, Boyd S. CVX: Matlab Software for Disciplined Convex Programming. Version 2.0 beta. http://cvxr.com/cvx/

Download references

Author information

Correspondence to Chengwen Xing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xing, C., Fei, Z., Zhou, Y. et al. Transceiver designs with matrix-version water-filling architecture under mixed power constraints. Sci. China Inf. Sci. 59, 102312 (2016). https://doi.org/10.1007/s11432-016-5534-8

Download citation

Keywords

  • convex optimization
  • MIMO
  • matrix-version water-filling
  • transceiver designs
  • mix power constraints

关键词

  • 凸优化
  • 多输入输出
  • 矩阵版注水
  • 收发机设计
  • 混合功率约束