Dynamics and stability for a class of evolutionary games with time delays in strategies



This paper investigates the modeling and stability of a class of finite evolutionary games with time delays in strategies. First, the evolutionary dynamics of a sequence of strategy profiles, named as the profile trajectory, is proposed to describe the strategy updating process of the evolutionary games with time delays. Using the semi-tensor product of matrices, the profile trajectory dynamics with two kinds of time delays are converted into their algebraic forms respectively. Then a sufficient condition is obtained to assure the stability of the delayed evolutionary potential games at a pure Nash equilibrium.



针对策略存在时间延迟的有限演化博弈, 本文研究了其动态演化过程和稳定性。 首先, 利用矩阵的半张量积这一数学工具, 将策略存在常时滞和变时滞两种不同情况下的逻辑动态演化过程分别转化为相应的代数表达形式。 其次, 利用势博弈的优点, 给出了时滞演化的有限势博弈收敛到纳什均衡点的充分条件。

This is a preview of subscription content, access via your institution.


  1. 1

    Maynard S J, Price G R. The logic of animal conflict. Nature, 1973, 246: 15–18

    Article  Google Scholar 

  2. 2

    Madeo D, Mocenni C. Game interactions and dynamics on networked populations. IEEE Trans Automat Contr, 2015, 60: 1801–1810

    MathSciNet  Article  Google Scholar 

  3. 3

    Parke W R, Waters G A. An evolutionary game theory explanation of ARCH effects. J Econ Dynam Control, 2007, 31: 2234–2262

    MathSciNet  Article  MATH  Google Scholar 

  4. 4

    Ohtsuki H, Hauert C, Lieberman E, et al. A simple rule for the evolution of cooperation on graphs and social networks. Nature, 2006, 441: 502–505

    Article  Google Scholar 

  5. 5

    Mojica-Nava E, Macana C A, Quijano N. Dynamic population games for optimal dispatch on hierarchical microgrid control. IEEE Trans Syst Man Cybern: Syst, 2014, 44: 306–317

    Article  Google Scholar 

  6. 6

    Alboszta J, Miekisz J. Stability and evolutionary stable strategies in discrete replicator dynamics with delay. J Theor Biol, 2004, 231: 175–179

    MathSciNet  Article  Google Scholar 

  7. 7

    Taylor P D, Jonker L. Evolutionary stable strategies and game dynamics. Math Biosci, 1978, 16: 76–83

    MathSciNet  Google Scholar 

  8. 8

    Szabó G, Fath G. Evolutionary games on graphs. Phys Rep, 2007, 446: 97–216

    MathSciNet  Article  Google Scholar 

  9. 9

    Suzuki S, Akiyama E. Evolutionary stability of first-order-information indirect reciprocity in sizable groups. Theor Popul Biol, 2008, 73: 426–436

    Article  MATH  Google Scholar 

  10. 10

    Arino J, Wang L, Wolkowicz G. An alternate formulation for a delayed logistic equation. J Theor Biol, 2006, 241: 109–119

    MathSciNet  Article  Google Scholar 

  11. 11

    Miekisz J, Wesolowski S. Stochasticity and time delays in evolutionary games. Dynam Games Appl, 2011, 1: 440–448

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Tao Y, Wang Z. Effect of time delay and evolutionarily stable strategy. J Theor Biol, 1997, 187: 111–116

    Article  Google Scholar 

  13. 13

    Tembine H, Altman E, El-Azouzi R. Delayed evolutionary game dynamics applied to medium access control. In: Proceedings of IEEE International Conference on Mobile Adhoc and Sensor Systems, Pisa, 2007. 1–6

    Google Scholar 

  14. 14

    Brown G W. Iterative solution of games by fictitious play. Activ Anal Prod Allocation, 1951, 13: 374–376

    MathSciNet  MATH  Google Scholar 

  15. 15

    Candogan O, Menache I, Ozdaglar A, et al. Flows and decompositions of games: harmonic and potential games. Math Oper Res, 2011, 36: 474–503

    MathSciNet  Article  MATH  Google Scholar 

  16. 16

    Morris S, Ui T. Generalized potentials and robust sets of equilibria. J Econ Theory, 2005, 124: 45–78

    MathSciNet  Article  MATH  Google Scholar 

  17. 17

    Ui T. Robust equilibria of potential games. Econometrica, 2001, 69: 1373–1380

    MathSciNet  Article  MATH  Google Scholar 

  18. 18

    Sandholm W H. Large population potential games. J Econ Theory, 2009, 144: 1710–1725

    MathSciNet  Article  MATH  Google Scholar 

  19. 19

    Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. London: Springer, 2011

  20. 20

    Li Z Q, Song J L. Controllability of Boolean control networks avoiding states set. Sci China Inf Sci, 2014, 57: 032205

    MATH  Google Scholar 

  21. 21

    Feng J, Yao J, Cui P. Singular Boolean networks: semi-tensor product approach. Sci China Inf Sci, 2013, 56: 112203

    MathSciNet  Article  Google Scholar 

  22. 22

    Li H, Wang Y, Xie L. Output tracking control of Boolean control networks via state feedback: constant reference signal case. Automatica, 2015, 59: 54–59

    MathSciNet  Article  MATH  Google Scholar 

  23. 23

    Zhao Y, Cheng D Z. On controllability and stabilizability of probabilistic Boolean control networks. Sci China Inf Sci, 2014, 57: 012202

    MathSciNet  MATH  Google Scholar 

  24. 24

    Liu Z B, Wang Y Z, Li H T. Two kinds of optimal controls for probabilistic mix-valued logical dynamic networks. Sci China Inf Sci, 2014, 57: 052201

    MathSciNet  MATH  Google Scholar 

  25. 25

    Wang Y, Zhang C, Liu Z. A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems. Automatica, 2012, 48: 1227–1236

    MathSciNet  Article  MATH  Google Scholar 

  26. 26

    Cheng D, He F, Qi H, et al. Modeling, analysis and control of networked evolutionary games. IEEE Trans Automat Contr, 2015, 60: 2402–2415

    MathSciNet  Article  Google Scholar 

  27. 27

    Guo P, Wang Y, Li H. Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor method. Automatica, 2013, 49: 3384–3389

    MathSciNet  Article  MATH  Google Scholar 

  28. 28

    Zhang L J, Zhang K Z. Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories. Sci China Inf Sci, 2013, 56: 108201

    MathSciNet  Google Scholar 

  29. 29

    Rasmusen E. Games and Information: an Introduction to Game Theory. Oxford: Basil Blackwell, 2007

    Google Scholar 

  30. 30

    Monderer D, Shapley L S. Potential games. Games Econ Behav, 1996, 14: 124–143

    MathSciNet  Article  MATH  Google Scholar 

  31. 31

    Cheng D. On finite potential games. Automatica, 2014, 50: 1793–1801

    MathSciNet  Article  MATH  Google Scholar 

  32. 32

    Young H P. The evolution of conventions. Econometrica, 1993, 61: 57–84

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yuanhua Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, D. Dynamics and stability for a class of evolutionary games with time delays in strategies. Sci. China Inf. Sci. 59, 92209 (2016). https://doi.org/10.1007/s11432-016-5532-x

Download citation


  • evolutionary game
  • time delays
  • potential game
  • semi-tensor product of matrices
  • stability


  • 演化博弈
  • 时滞
  • 势博弈
  • 矩阵的半张量积
  • 稳定性