Investigation of plasmonic whispering gallery modes of graphene equilateral triangle nanocavities

Abstract

In this paper, a graphene-based equilateral triangle nanocavity is proposed and numerically investigated. The relationship between the mode characteristics and the nanocavity parameters, such as the geometry of nanocavity and the chemical potential of graphene, is systematically explored. A high-order plasmonic WGM (whispering gallery mode) with a high quality factor of 147.93 is obtained in our nanocavity with a wavelength of around 1.415 µm in free space, with a corresponding Purcell factor as high as 7.067 × 108. The proposed plasmonic WGM nanocavity could be a key component of the high density plasmonic integrated circuits due to its ultra-compactness and performances.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics, 2010, 4: 83–91

    Article  Google Scholar 

  2. 2

    Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830

    Article  Google Scholar 

  3. 3

    Kim M W, Chen Y, Moore J, et al. Subwavelength surface plasmon optical cavity-scaling, amplification, and coherence. IEEE J Sel Top Quant, 2009, 15: 1521–1528

    Article  Google Scholar 

  4. 4

    Chen Y L, Zou C L, Hu Y W, et al. High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity. Phys Rev A, 2013, 87: 023824

    Article  Google Scholar 

  5. 5

    Mikhailov S A, Ziegler K. New electromagnetic mode in graphene. Phys Rev Lett, 2007, 99: 016803

    Article  Google Scholar 

  6. 6

    Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol, 2011, 6: 630–634

    Article  Google Scholar 

  7. 7

    Zhao J, Qiu W, Huang Y, et al. Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks. Opt Lett, 2014, 39: 5527–5530

    Article  Google Scholar 

  8. 8

    Hanson G W. Dyadic green's functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys, 2008, 103: 064302

    Article  Google Scholar 

  9. 9

    Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332: 1291–1294

    Article  Google Scholar 

  10. 10

    Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultra high carrier densities. Phys Rev Lett, 2010, 105: 256805

    Article  Google Scholar 

  11. 11

    Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 2014, 8: 1086–1101

    Article  Google Scholar 

  12. 12

    Yang Y D, Huang Y Z, Guo WH, et al. Enhancement of quality factor for TE whispering-gallery modes in microcylinder resonators. Opt Express, 2010, 18: 13057–13062

    Article  Google Scholar 

  13. 13

    Chen Y H, Guo L J. Analysis of surface plasmon guided sub-wavelength microdisk cavity. In: Proceedings of LEOS the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Acapulco, 2008. 320–321

    Google Scholar 

  14. 14

    Chen Q, Hu Y H, Huang Y Z, et al. Equilateral-triangle-resonator injection lasers with directional emission. IEEE J Quantum Elect, 2007, 43: 440–444

    Article  Google Scholar 

  15. 15

    Lin J D, Huang Y Z, Yang Y D, et al. Single transverse whispering-gallery mode AlGaInAs/InP hexagonal resonator microlasers. IEEE Photonics J, 2011, 3: 756–764

    Article  Google Scholar 

  16. 16

    Wang S J, Huang Y Z, Yang Y D, et al. Long rectangle resonator 1550 Nm AlGaInAs/InP lasers. J Opt Soc Am B, 2010, 27: 719–724

    Article  Google Scholar 

  17. 17

    Yang Y D, Huang Y Z. Mode analysis and Q-factor enhancement due to mode coupling in rectangular resonators. IEEE J Quantum Elect, 2007, 43: 497–502

    Article  Google Scholar 

  18. 18

    Chen Q, Huang Y Z, Guo WH, et al. Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation. IEEE J Quantum Elect, 2005, 41: 997–1001

    Article  Google Scholar 

  19. 19

    Huang Y Z, Chen Q, Guo W H, et al. Experimental observation of resonant modes in GaInAsP microsquare resonators. IEEE Photonic Tech L, 2005, 17: 2589–2591

    Article  Google Scholar 

  20. 20

    Che K J, Huang Y Z. Mode characteristics of metallically coated square microcavity connected with an output waveguide. J Appl Phys, 2010, 107: 113103

    Article  Google Scholar 

  21. 21

    Che K J, Yang Y D, Huang Y Z. Multimode resonances in metallically confined square-resonator microlasers. Appl Phys Lett, 2010, 96: 051104

    Article  Google Scholar 

  22. 22

    Huang Y Z, Chen Q, Guo W H, et al. Mode characteristics for equilateral triangle optical resonators. IEEE J Sel Top Quant, 2006, 12: 59–65

    Article  Google Scholar 

  23. 23

    Yang Y D, Huang Y Z. Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators. Phys Rev A, 2007, 76: 023822

    Article  Google Scholar 

  24. 24

    Wysin G M. Electromagnetic modes in dielectric equilateral triangle resonators. J Optical Soc Am B, 2006, 23: 1586–1599

    MathSciNet  Article  Google Scholar 

  25. 25

    Huang Y Z, Guo W H, Yu L J, et al. Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations. IEEE J Quantum Elect, 2001, 37: 1259–1264

    Article  Google Scholar 

  26. 26

    Garcia de Abajo F J. Graphene plasmonics: challenges and opportunities. ACS Photonics, 2014, 1: 135–152

    Article  Google Scholar 

  27. 27

    Qiu W, Liu X, Zhao J, et al. Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer. Appl Phys Lett, 2014, 104: 041109

    Article  Google Scholar 

  28. 28

    Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Opt Express, 2009, 17: 23010–23015

    Article  Google Scholar 

  29. 29

    Liu D, Hattori H T, Fu L, et al. Single-mode operation of a large optically pumped triangular laser with lateral air trenches. J Opt Soc Am B, 2009, 26: 1417–1422

    Article  Google Scholar 

  30. 30

    Kwon S H. Deep subwavelength plasmonic whispering-gallery-mode cavity. Opt Express, 2012, 20: 24918–24924

    Article  Google Scholar 

  31. 31

    Xiao Y F, Li B B, Jiang X, et al. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. J Phys B-At Mol Opt, 2010, 43: 035402

    Article  Google Scholar 

  32. 32

    Vahala K J. Optical microcavities. Nature, 2003, 424: 839–846

    Article  Google Scholar 

  33. 33

    Gosciniak J, Tan D T H. Theoretical investigation of graphene-based photonic modulators. Sci Rep-UK, 2013, 3: 01897

    Google Scholar 

  34. 34

    Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011, 5: 5855–5863

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weibin Qiu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Qiu, W., Lin, S. et al. Investigation of plasmonic whispering gallery modes of graphene equilateral triangle nanocavities. Sci. China Inf. Sci. 59, 042413 (2016). https://doi.org/10.1007/s11432-016-5529-5

Download citation

Keywords

  • graphene
  • nanocavity resonator
  • surface plasmonic polaritons
  • whispering gallery mode
  • plasmonic integrated circuits