Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation of plasmonic whispering gallery modes of graphene equilateral triangle nanocavities

Abstract

In this paper, a graphene-based equilateral triangle nanocavity is proposed and numerically investigated. The relationship between the mode characteristics and the nanocavity parameters, such as the geometry of nanocavity and the chemical potential of graphene, is systematically explored. A high-order plasmonic WGM (whispering gallery mode) with a high quality factor of 147.93 is obtained in our nanocavity with a wavelength of around 1.415 µm in free space, with a corresponding Purcell factor as high as 7.067 × 108. The proposed plasmonic WGM nanocavity could be a key component of the high density plasmonic integrated circuits due to its ultra-compactness and performances.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics, 2010, 4: 83–91

  2. 2

    Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824–830

  3. 3

    Kim M W, Chen Y, Moore J, et al. Subwavelength surface plasmon optical cavity-scaling, amplification, and coherence. IEEE J Sel Top Quant, 2009, 15: 1521–1528

  4. 4

    Chen Y L, Zou C L, Hu Y W, et al. High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity. Phys Rev A, 2013, 87: 023824

  5. 5

    Mikhailov S A, Ziegler K. New electromagnetic mode in graphene. Phys Rev Lett, 2007, 99: 016803

  6. 6

    Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol, 2011, 6: 630–634

  7. 7

    Zhao J, Qiu W, Huang Y, et al. Investigation of plasmonic whispering-gallery mode characteristics for graphene monolayer coated dielectric nanodisks. Opt Lett, 2014, 39: 5527–5530

  8. 8

    Hanson G W. Dyadic green's functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys, 2008, 103: 064302

  9. 9

    Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332: 1291–1294

  10. 10

    Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultra high carrier densities. Phys Rev Lett, 2010, 105: 256805

  11. 11

    Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 2014, 8: 1086–1101

  12. 12

    Yang Y D, Huang Y Z, Guo WH, et al. Enhancement of quality factor for TE whispering-gallery modes in microcylinder resonators. Opt Express, 2010, 18: 13057–13062

  13. 13

    Chen Y H, Guo L J. Analysis of surface plasmon guided sub-wavelength microdisk cavity. In: Proceedings of LEOS the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Acapulco, 2008. 320–321

  14. 14

    Chen Q, Hu Y H, Huang Y Z, et al. Equilateral-triangle-resonator injection lasers with directional emission. IEEE J Quantum Elect, 2007, 43: 440–444

  15. 15

    Lin J D, Huang Y Z, Yang Y D, et al. Single transverse whispering-gallery mode AlGaInAs/InP hexagonal resonator microlasers. IEEE Photonics J, 2011, 3: 756–764

  16. 16

    Wang S J, Huang Y Z, Yang Y D, et al. Long rectangle resonator 1550 Nm AlGaInAs/InP lasers. J Opt Soc Am B, 2010, 27: 719–724

  17. 17

    Yang Y D, Huang Y Z. Mode analysis and Q-factor enhancement due to mode coupling in rectangular resonators. IEEE J Quantum Elect, 2007, 43: 497–502

  18. 18

    Chen Q, Huang Y Z, Guo WH, et al. Analysis of modes in a freestanding microsquare resonator by 3-D finite-difference time-domain simulation. IEEE J Quantum Elect, 2005, 41: 997–1001

  19. 19

    Huang Y Z, Chen Q, Guo W H, et al. Experimental observation of resonant modes in GaInAsP microsquare resonators. IEEE Photonic Tech L, 2005, 17: 2589–2591

  20. 20

    Che K J, Huang Y Z. Mode characteristics of metallically coated square microcavity connected with an output waveguide. J Appl Phys, 2010, 107: 113103

  21. 21

    Che K J, Yang Y D, Huang Y Z. Multimode resonances in metallically confined square-resonator microlasers. Appl Phys Lett, 2010, 96: 051104

  22. 22

    Huang Y Z, Chen Q, Guo W H, et al. Mode characteristics for equilateral triangle optical resonators. IEEE J Sel Top Quant, 2006, 12: 59–65

  23. 23

    Yang Y D, Huang Y Z. Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators. Phys Rev A, 2007, 76: 023822

  24. 24

    Wysin G M. Electromagnetic modes in dielectric equilateral triangle resonators. J Optical Soc Am B, 2006, 23: 1586–1599

  25. 25

    Huang Y Z, Guo W H, Yu L J, et al. Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations. IEEE J Quantum Elect, 2001, 37: 1259–1264

  26. 26

    Garcia de Abajo F J. Graphene plasmonics: challenges and opportunities. ACS Photonics, 2014, 1: 135–152

  27. 27

    Qiu W, Liu X, Zhao J, et al. Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer. Appl Phys Lett, 2014, 104: 041109

  28. 28

    Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Opt Express, 2009, 17: 23010–23015

  29. 29

    Liu D, Hattori H T, Fu L, et al. Single-mode operation of a large optically pumped triangular laser with lateral air trenches. J Opt Soc Am B, 2009, 26: 1417–1422

  30. 30

    Kwon S H. Deep subwavelength plasmonic whispering-gallery-mode cavity. Opt Express, 2012, 20: 24918–24924

  31. 31

    Xiao Y F, Li B B, Jiang X, et al. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. J Phys B-At Mol Opt, 2010, 43: 035402

  32. 32

    Vahala K J. Optical microcavities. Nature, 2003, 424: 839–846

  33. 33

    Gosciniak J, Tan D T H. Theoretical investigation of graphene-based photonic modulators. Sci Rep-UK, 2013, 3: 01897

  34. 34

    Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011, 5: 5855–5863

Download references

Author information

Correspondence to Weibin Qiu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Qiu, W., Lin, S. et al. Investigation of plasmonic whispering gallery modes of graphene equilateral triangle nanocavities. Sci. China Inf. Sci. 59, 042413 (2016). https://doi.org/10.1007/s11432-016-5529-5

Download citation

Keywords

  • graphene
  • nanocavity resonator
  • surface plasmonic polaritons
  • whispering gallery mode
  • plasmonic integrated circuits