A novel weighting scheme for random k-SAT

关于随机 k-SAT 的新加权方法


Consider a random k-conjunctive normal form F k (n, rn) with n variables and rn clauses. We prove that if the probability that the formula F k (n, rn) is satisfiable tends to 0 as n→∞, then r ⩾ 2.83, 8.09, 18.91, 40.81, and 84.87, for k = 3, 4, 5, 6, and 7, respectively.



SAT 问题是第一个被证明的 NP 完全问题, 是理论计算机科学研究的核心问题之一。 自从上世纪九十年代初发现 NP 完全问题存在相变现象以来, 随机 k-SAT 问题的相变现象受到了理论计算机科学、 人工智能、组合学、 概率和统计物理等领域的广泛关注。 其中人们最感兴趣的是关于随机 k-SAT 问题的可满足性阈值猜想。 2014 年, Ding Jian 等人证明了当 k 充分大时可满足性阈值猜想成立, 但当 k 比较小时的进展仍然是比较缓慢。 在本文中, 我们充分挖掘加权二阶矩方法的潜力, 得到了随机 k-SAT 阈值的下界: k = 3, 4, 5, 6, 7 时, 分别为 2.83, 8.09, 18.91, 40.81 和 84.87。 其中 18.91, 40.81 和 84.87 是目前已知最好的下界。

This is a preview of subscription content, access via your institution.


  1. 1

    Achlioptas D, Peres Y. The threshold for random k-SAT is 2k log 2 - O(k). J Amer Math Soc, 2004, 17: 947–973

    MathSciNet  Article  MATH  Google Scholar 

  2. 2

    Frieze A, Wormald N C. Random k-SAT: a tight threshold for moderately growing k. Combinatorica, 2005, 25: 297–305

    MathSciNet  Article  MATH  Google Scholar 

  3. 3

    Liu J, Gao Z S, Xu K. A Note on Random k-SAT for Moderately Growing k. Electron J Combin, 2012, 19: 24

    MathSciNet  MATH  Google Scholar 

  4. 4

    Achlioptas D, Moore C. Ramdom k-SAT: two moments suffice to cross a sharp threshold. SIAM J Comput, 2006, 36: 740–762

    MathSciNet  Article  MATH  Google Scholar 

  5. 5

    Achlioptas D, Moore C. The asymptotic order of the random k-SAT threshold. In: Proceeding of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, 2002. 126–127

    Google Scholar 

  6. 6

    Chvátal V, Reed B. Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, 1992. 620–627

    Google Scholar 

  7. 7

    Erdos P, Lovász L. Problems and results on 3-chromatic hypergraphs and some related questions. Colloq Math Soc János Bolyai, 1973, 10: 609–627

    MathSciNet  Google Scholar 

  8. 8

    Friedgut E. Necessary and sufficient conditions for sharp thresholds of graph properties, and the k-SAT problem. J Amer Math Soc, 1999, 12: 1017–1054

    MathSciNet  Article  MATH  Google Scholar 

  9. 9

    Janson S, Stamatiou Y C, Vamvakari M. Bounding the unsatisfiability threshold of random 3-SAT. Random Struct Algor, 2000, 17: 103–116

    MathSciNet  Article  MATH  Google Scholar 

  10. 10

    Ding J, Sly A, Sun N. Proof of the satisfiability conjecture for large k. arXiv:1411.0650

  11. 11

    Kaporis A C, Kirousis L M, Lalas E G. The probabilistic analysis of a greedy satisfiability algorithm. Random Struct Algor, 2006, 28: 444–480

    MathSciNet  Article  MATH  Google Scholar 

  12. 12

    Vorobyev F Y. A lower bound for the 4-satisfiability threshold. Discrete Math Appl, 2007, 17: 287–294

    MathSciNet  Article  Google Scholar 

  13. 13

    de Bruijn N G. Asymptotic Methods in Analysis. 3rd ed. New York: Dover Publications Inc, 1981

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ke Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, K. A novel weighting scheme for random k-SAT. Sci. China Inf. Sci. 59, 92101 (2016). https://doi.org/10.1007/s11432-016-5526-8

Download citation


  • complexity
  • satisfiability
  • phase transition
  • second moment method
  • weighting scheme


  • 计算复杂性
  • 可满足性
  • 相变
  • 二阶矩
  • 加权方法