Abstract
Consider a random k-conjunctive normal form F k (n, rn) with n variables and rn clauses. We prove that if the probability that the formula F k (n, rn) is satisfiable tends to 0 as n→∞, then r ⩾ 2.83, 8.09, 18.91, 40.81, and 84.87, for k = 3, 4, 5, 6, and 7, respectively.
摘要
创新点
SAT 问题是第一个被证明的 NP 完全问题, 是理论计算机科学研究的核心问题之一。 自从上世纪九十年代初发现 NP 完全问题存在相变现象以来, 随机 k-SAT 问题的相变现象受到了理论计算机科学、 人工智能、组合学、 概率和统计物理等领域的广泛关注。 其中人们最感兴趣的是关于随机 k-SAT 问题的可满足性阈值猜想。 2014 年, Ding Jian 等人证明了当 k 充分大时可满足性阈值猜想成立, 但当 k 比较小时的进展仍然是比较缓慢。 在本文中, 我们充分挖掘加权二阶矩方法的潜力, 得到了随机 k-SAT 阈值的下界: k = 3, 4, 5, 6, 7 时, 分别为 2.83, 8.09, 18.91, 40.81 和 84.87。 其中 18.91, 40.81 和 84.87 是目前已知最好的下界。
This is a preview of subscription content, access via your institution.
References
- 1
Achlioptas D, Peres Y. The threshold for random k-SAT is 2k log 2 - O(k). J Amer Math Soc, 2004, 17: 947–973
- 2
Frieze A, Wormald N C. Random k-SAT: a tight threshold for moderately growing k. Combinatorica, 2005, 25: 297–305
- 3
Liu J, Gao Z S, Xu K. A Note on Random k-SAT for Moderately Growing k. Electron J Combin, 2012, 19: 24
- 4
Achlioptas D, Moore C. Ramdom k-SAT: two moments suffice to cross a sharp threshold. SIAM J Comput, 2006, 36: 740–762
- 5
Achlioptas D, Moore C. The asymptotic order of the random k-SAT threshold. In: Proceeding of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, 2002. 126–127
- 6
Chvátal V, Reed B. Mick gets some (the odds are on his side). In: Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, 1992. 620–627
- 7
Erdos P, Lovász L. Problems and results on 3-chromatic hypergraphs and some related questions. Colloq Math Soc János Bolyai, 1973, 10: 609–627
- 8
Friedgut E. Necessary and sufficient conditions for sharp thresholds of graph properties, and the k-SAT problem. J Amer Math Soc, 1999, 12: 1017–1054
- 9
Janson S, Stamatiou Y C, Vamvakari M. Bounding the unsatisfiability threshold of random 3-SAT. Random Struct Algor, 2000, 17: 103–116
- 10
Ding J, Sly A, Sun N. Proof of the satisfiability conjecture for large k. arXiv:1411.0650
- 11
Kaporis A C, Kirousis L M, Lalas E G. The probabilistic analysis of a greedy satisfiability algorithm. Random Struct Algor, 2006, 28: 444–480
- 12
Vorobyev F Y. A lower bound for the 4-satisfiability threshold. Discrete Math Appl, 2007, 17: 287–294
- 13
de Bruijn N G. Asymptotic Methods in Analysis. 3rd ed. New York: Dover Publications Inc, 1981
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, J., Xu, K. A novel weighting scheme for random k-SAT. Sci. China Inf. Sci. 59, 92101 (2016). https://doi.org/10.1007/s11432-016-5526-8
Received:
Accepted:
Published:
Keywords
- complexity
- satisfiability
- phase transition
- second moment method
- weighting scheme
关键词
- 计算复杂性
- 可满足性
- 相变
- 二阶矩
- 加权方法