Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A micro-array bio detection system based on a GMR sensor with 50-ppm sensitivity

  • 164 Accesses

  • 1 Citations


Bio detection is widely utilized in hospitals and laboratories. However, conventional bio detection methods suffer from long detection time, complex operation, and low sensitivity, and these issues prevent their use in point of care testing (POCT) applications. Microelectronic bio detection methods are proposed to overcome these issues. Bio detection based on a micro-electronic technique allows easy integration of a system, leading to a fast detection speed and simple operation. In this work, a fully microelectronic bio detection system including a sensor design, a read-out strategy, and data processing is proposed based on a GMR biosensor. A GMR sensor chip is designed and different passivation layer thicknesses are tested to improve sensitivity. A 40 nm thickness passivation is realized to produce the largest response without oxidization and breakdown. In order to integrate the read-out circuit and simplify operations, a 4-channel read-out biochip is designed and fabricated, and this exhibits a super-low output noise corresponding to −116.84 dBm/Hz at the operation frequency. This means that the noise only approximately corresponds to the signal level of five magnetic nanoparticles with a diameter of 200 nm. A reference sensor is also utilized to cancel the unwanted signal and reduce common-mode noise and error to improve sensitivity. Measurements indicate that 90% suppression is achieved. The measurements also reveal that a sensitivity of 50 ppm is achieved with the proposed GMR bio detection system.

This is a preview of subscription content, log in to check access.


  1. 1

    Lequin R M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem, 2005, 51: 2415–2418

  2. 2

    Leng S X, McElhaney J E, Walston J D, et al. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol Ser A-Biol Sci Med Sci, 2008, 63: 879–884

  3. 3

    Weiss S. Fluorescence spectroscopy of single biomolecules. Science, 1999, 283: 1676–1683

  4. 4

    Yazawa Y, Oonishi T, Watanabe K, et al. A wireless biosensing chip for DNA detection. In: Digest of Technical Papers of IEEE International Solid-State Circuits Conference (ISSCC), 2005. 562–617

  5. 5

    Garner D M, Bai H, Georgiou P, et al. A multichannel DNA SoC for rapid point-of-care gene detection. In: Digest of Technical Papers of IEEE International Solid-State Circuits Conference (ISSCC), 2010. 492–493

  6. 6

    Wang Z, Miao J, Xu T, et al. Biosensors based on flexural mode piezo-diaphragm. In: Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sanya, 2008. 374–378

  7. 7

    Zhang L, He X Q, Wang Y, et al. A fully integrated CMOS nanoscale biosensor microarray. In: Proceedings of IEEE Custom Integrated Circuits Conference (CICC), San Jose, 2011. 1–4

  8. 8

    Manickam A, Chevalier A, McDermott M, et al. A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans Biomed Circuits Syst, 2010, 4: 379–390

  9. 9

    Skucha K, Liu P, Megens M, et al. A compact hall-effect sensor array for the detection and imaging of single magnetic bead in biomedical assay. In: Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, 2011. 1833–1836

  10. 10

    Besse P, Boero G, Demierre M, et al. Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl Phys Lett, 2002, 80: 4199–4201

  11. 11

    Wang H, Chen Y, Hassibi A, et al. A frequency-shift CMOS magnetic biosensor array with signle-bead sensitibity and no external magnet. In: Digest of Technical Papers of IEEE International Solid-State Circuits Conference (ISSCC), 2009. 438–439

  12. 12

    Koets M, van der Wijk T, van Eemerena J T W M, et al. Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosens Bioelectron, 2009, 24: 1893–1898

  13. 13

    Han S J, Xu L, Yu H, et al. CMOS integrated DNA microarray based on GMR sensor. In: Proceedings of International Electron Devices Meeting (IEDM’06), San Francisco, 2006. 11–13

  14. 14

    de Boer B M, Kahlman J A H M, Jansen T P G H, et al. An integrated and sensitive detection platform for magneto- resistive biosensors. Biosens Bioelectron, 2007, 22: 2366–2370

  15. 15

    Hall D A, Gaster R S, Osterfeld S J, et al. A 256 channel magnetoresistive biosensor microarray for quantitative proteomics. In: Proceedings of 2011 Symposium on VLSI Circuits (VLSIC), Honolulu, 2011. 174–175

  16. 16

    Hall D A, Gaster R S, Osterfeld S J, et al. GMR biosensor arrays: correction techniques for reproducibility and enhanced sensitivity. Biosens Bioelectron, 2010, 25: 2177–2181

  17. 17

    Hall D A, Gaster R S, Makinwa K A A, et al. A 256 Pixel Magnetoresistive Biosensor Microarray in 0.18µm CMOS. IEEE J Solid-State Circ, 2013, 48: 1290–1301

  18. 18

    Rife J C, Miller M M, Sheehan P E, et al. Design and performance of GMR sensor for the detection of magnetic microbeads in biosensors. Sensor Actuator A-Phys, 2003, 107: 209–218

  19. 19

    Wang H. Magnetic sensors for diagnostic medicine: CMOS-based magnetic particle detectors for medical diagnosis applications. Microw Mag, 2013, 14: 110–130

  20. 20

    Skucha K, Gambini S, Liu P, et al. Design considerations for CMOS-integrated Hall-effect magnetic bead detectors for biosensor applications. J Microelectromech Syst, 2013, 22: 1327–1338

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 61204026, 61101001, 61674087), Guangdong’s High-Tech Project (Grant No. 2015B020233001), Dongguan’s High-Tech Project (Grant No. 2014215102), and Tsinghua University Initiative Scientific Research Program.

Author information

Correspondence to Lei Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, L., Geng, J. et al. A micro-array bio detection system based on a GMR sensor with 50-ppm sensitivity. Sci. China Inf. Sci. 60, 082403 (2017). https://doi.org/10.1007/s11432-016-0645-2

Download citation


  • giant magnetoresistance (GMR)
  • biosensor
  • magnetic nanoparticle (MNP)
  • small signal extraction
  • sensitivity